Aqueous calcium chloride has a number of potential advantages as a compact and long-term solar .storage medium compared with sensibly heated water. The combination of sensible and chemical binding energy of the liquid desiccant provides higher energy densities and lower thermal losses, as well as a temperature lift during discharge via an absorption heat pump. Calcium chloride is an excellent choice among desiccant materials because it is relatively inexpensive, nontoxic, and environmentally safe. This paper provides an overview of its application for solar storage and presents a novel concept for storing the liquid desiccant in a single storage vessel. The storage system uses an internal heat exchanger to add and discharge thermal energy and to help manage the mass, momentum, and energy transfer in the tank. The feasibility of the proposed concept is demonstrated via a computational fiuid dynamic study of heat and mass tran.sfer in the system over a range ofRayleigh, Lewis, Prandtl, and buoyancy ratio numbers expected in practice.
Aqueous calcium chloride has a number of potential advantages as a compact and long-term solar storage medium compared to sensibly heated water. The combination of sensible and chemical binding energy of the liquid desiccant provides higher energy densities and lower thermal losses, as well as a temperature lift during discharge via an absorption heat pump. Calcium chloride is an excellent choice among desiccant materials because it is relatively inexpensive, non-toxic, and environmentally safe. This paper provides an overview of its application for solar storage and presents a novel concept for storing the liquid desiccant in a single storage vessel. The storage system uses an internal heat exchanger to add and discharge thermal energy and to help manage the mass, momentum, and energy transfer in the tank. The feasibility of the proposed concept is demonstrated via a computational fluid dynamic study of heat and mass transfer in the system over a range of Rayleigh, Lewis, Prandtl, and buoyancy ratio numbers expected in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.