Abstract. This article provides an overview of recent work on descriptions and properties of the convex minorant of random walks and Lévy processes as detailed in [1,15,16], which summarize and extend the literature on these subjects.The results surveyed include point process descriptions of the convex minorant of random walks and Lévy processes on a fixed finite interval, up to an independent exponential time, and in the infinite horizon case. These descriptions follow from the invariance of these processes under an adequate path transformation. In the case of Brownian motion, we note how further special properties of this process, including time-inversion, imply a sequential description for the convex minorant of the Brownian meander.
We offer a unified approach to the theory of concave majorants of random walks, by providing a path transformation for a walk of finite length that leaves the law of the walk unchanged whilst providing complete information about the concave majorant. This leads to a description of a walk of random geometric length as a Poisson point process of excursions away from its concave majorant, which is then used to find a complete description of the concave majorant of a walk of infinite length. In the case where subsets of increments may have the same arithmetic mean, we investigate three nested compositions that naturally arise from our construction of the concave majorant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.