Noninvasive brain stimulation methods are becoming increasingly common tools in the kit of the cognitive scientist. In particular, transcranial direct-current stimulation (tDCS) is showing great promise as a tool to causally manipulate the brain and understand how information is processed. The popularity of this method of brain stimulation is based on the fact that it is safe, inexpensive, its effects are long lasting, and you can increase the likelihood that neurons will fire near one electrode and decrease the likelihood that neurons will fire near another. However, this method of manipulating the brain to draw causal inferences is not without complication. Because tDCS methods continue to be refined and are not yet standardized, there are reports in the literature that show some striking inconsistencies. Primary among the complications of the technique is that the tDCS method uses two or more electrodes to pass current and all of these electrodes will have effects on the tissue underneath them. In this tutorial, we will share what we have learned about using tDCS to manipulate how the brain perceives, attends, remembers, and responds to information from our environment. Our goal is to provide a starting point for new users of tDCS and spur discussion of the standardization of methods to enhance replicability.
Findings suggest that MVPA may be associated with greater executive function and working memory in BCSs. Further, this effect may be partially indirect through cancer-related symptoms (e.g., fatigue). Results emphasize the need for additional scientific investigation in the context of prospective and efficacy trials.
BackgroundEvidence suggests reallocating daily sedentary time to physical activity or sleep confers important health benefits in cancer survivors. Despite emerging research suggesting physical activity as a treatment for cancer-related cognitive impairment (CRCI), little is known about the interactive effects of behaviors across the 24-h period. The present purpose was to examine the cognitive effects of reallocating sedentary time to light-intensity physical activity, moderate-to-vigorous physical activity (MVPA), or sleep in breast cancer survivors.MethodsBreast cancer survivors (N = 271, Mage = 57.81 ± 9.50 years) completed iPad-based questionnaires and cognitive tasks assessing demographics, health history, executive function, and processing speed (Task-Switch, Trail Making). Participants wore an accelerometer for seven consecutive days to measure their sedentary, physical activity, and sleep behaviors. Single effects (each behavior individually) and partition (controlling for other behaviors) models were used to examine associations among behaviors and cognitive performance. Isotemporal substitution models were used to test the cognitive effects of substituting 30 min of sedentary time with 30 min of light-intensity activity, MVPA, and sleep.ResultsMVPA was associated with faster Task-switch reaction time in the partition models (stay: B = − 35.31, p = 0.02; switch: B = − 48.24, p = 0.004). Replacing 30 min of sedentary time with 30 min of MVPA yielded faster reaction times on Task-Switch stay (B = − 29.37, p = 0.04) and switch (B = − 39.49, p = 0.02) trials. In Trails A single effects models, sedentary behavior was associated with faster completion (B = − 0.97, p = 0.03) and light-intensity activity with slower completion (B = 1.25, p = 0.006). No single effects were observed relative to Trails B completion (all p > 0.05). Only the effect of MVPA was significant in the partition models (Trails A: B = − 3.55, p = 0.03; Trails B: B = − 4.46, p = 0.049). Replacing sedentary time with light-intensity activity was associated with slower Trails A (B = 1.55 p = 0.002) and Trails B (B = 1.69, p = 0.02) completion. Replacing light activity with MVPA yielded faster Trails A (B = − 4.35, p = 0.02) and Trails B (B = − 5.23, p = 0.03) completion.ConclusionsFindings support previous research suggesting MVPA may be needed to improve cognitive function in breast cancer survivors. Trails findings underscore the need to dissect sedentary contexts to better understand the impact of daily behavioral patterns on CRCI. Additional research investigating the cognitive impacts of behaviors across the 24-h period is warranted.Trial registrationThis study is registered with United States ClinicalTrials.gov (NCT02523677; 8/14/2015).Electronic supplementary materialThe online version of this article (10.1186/s12885-018-4603-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.