Introduction:The aim of this study was to correlate lesion depth of natural caries, measured with Polarized Light Microscopy (PLM), to Canary Numbers (CN) derived from The Canary System™ (CS), numerical readings from DIAGNOdent (DD), and lesion scores from ICDAS II.Methods:A total of 20 examination sites on extracted human molars and premolars were selected. The selected examination sites consisted of healthy and enamel caries on smooth and occlusal surfaces of each tooth. Two blinded dentists ranked each examination site using ICDAS II and the consensus score for each examined site was recorded. The same examination sites were scanned with CS and DD, and the CN and DD readings were recorded. After all the measurements were completed, the readings of the three caries detection methods were validated with a histological method, Polarized Light Microscopy (PLM). PLM performed by blinded examiners was used as the ‘gold standard’ to confirm the presence or absence of a caries lesion within each examined site and to determine caries lesion depth.Results:Pearson’s coefficients of correlation with caries lesion depth of CNs, DD readings and ICDAS scores were 0.84, 0.21 and 0.77, respectively. Mean ± SD CN for sound sites (n=3), caries lesion depths <800 µm (n=11), and caries lesion depths >800 µm (n=6) were 11±1, 55±15, and 75±22, respectively. Mean ± SD DD readings for sound sites, caries lesion depths <800 µm, and caries lesion depths >800 µm were 1±1, 7±11, and 8±9, respectively. Mean ± SD ICDAS II scores for sound sites, caries lesion depths <800 µm, and caries lesion depths >800 µm were 0±0, 2±1, and 2±1, respectively. The intra-operator repeatability for the Canary System was .953 (0.913, 0.978).Conclusion:This study demonstrated that the CS exhibits much higher correlation with caries lesion depth compared to ICDAS II and DD. CS may provide the clinician with more information about the size and position of the lesion which might help in monitoring or treating the lesion.The present extracted tooth study found that The Canary System correlates with caries lesion depth more accurately that ICDAS II and DIAGNOdent.
The Canary System can serve as a clinical tool to aid dental professionals to detect and monitor the status of caries lesions and tooth structure underneath sealant. The increased likelihood of false-positive diagnoses with DIAGNOdent due to intrinsic auto-fluorescence of sealant filler and opacifying agents might limit its usefulness as an aid to detect caries underneath opaque sealants.
Introduction:A clinical study was initiated to investigate a caries detection device (The Canary System (CS)), based on photothermal radiometry and modulated luminescence (PTR-LUM). The primary objective of this study was to determine if PTR-LUM values (in the form of Canary Numbers; CN) correlate with International Caries Diagnostic and Assessment System (ICDAS II) scores and clinical situations. The secondary objectives of this study were to monitor the safety of PTR-LUM, and collect data to determine how CN values could be used to differentiate healthy from decayed tooth surfaces on a normalized scale.Methods:The trial was a four site, non-blinded study. Data was collected from 92 patients, resulting in 842 scanned tooth surfaces over multiple appointments. Surfaces were assessed according to ICDAS II, and further stratified into five clinical situation categories: 1) healthy surface, 2) non-cavitated white and/or brown spots; 3) caries lesions; 4) cavitation and 5) teeth undergoing remineralization therapy.CN data was analyzed separately for smooth and occlusal surfaces. Using a semi-logarithmic graph to plot raw CN (rCN) and normalized (CN) values, rCN data was normalized into a scale of 0-100.Results:Linear correlations (R2) between CN and ICDAS II groupings for smooth and occlusal surfaces were calculated as 0.9759 and 0.9267, respectively. The mean CN values derived from smooth (20.2±0.6) and occlusal (19±1.0) surfaces identified as healthy had significantly lower CN values (P<0.05) compared with the values from the other clinical situation categories. No adverse events were reported.Conclusion:The present study demonstrated the safety of PTR-LUM for clinical application and its ability to distinguish sound from carious tooth surfaces. A clear shift from the baseline in both PTR and LUM in carious enamel was observed depending on the type and nature of the lesion, and correlated to ICDAS II classification codes, which enabled the preliminary development of a Canary Scale.
Objective:The aim of this study was to evaluate the ability of PTR-LUM (The Canary System, CS), laser fluorescence (DIAGNOdent, DD), LED fluorescence (Spectra), and visual inspection (ICDAS II) to detect natural decay around bonded amalgam restorations in vitro.Methods:Seventeen extracted human molars and premolars, consisting of visually healthy (n=5) and natural cavitated (n=12) teeth were selected. For the carious teeth, caries was removed leaving some decayed tissue on the floor and or wall of the preparation. For sound teeth, 3 mm. deep cavity preparations were made and teeth were restored with bonded-amalgam restorations. Thirty-six sites (13 sound sites; 23 carious sites) were selected. CS and DD scans were performed in triplicate at 2, 1.5, 0.5, and 0 mm away from the margin of the restoration (MOR). Spectra images were captured for the entire surface, and dentists blinded to the samples provided ICDAS II scoring.Results:Canary Numbers (Mean±SE) for healthy and carious sites at 2, 1.5, 0.5, and 0 mm from the MOR ranged from 12.9±0.9 to 15.4±0.9 and 56.1±4.0 to 56.3±2.0, respectively. DD peak values for healthy and carious sites ranged from 4.7±0.5 to 13.5±2.99, and 16.7±3.7 to 24.5±4.4, respectively. For CS and DD, sensitivity/specificity for sites at 2.0, 1.5, 0.5, 0 mm ranged from 0.95-1.0/0.85-1.0, and 0.45-0.74/0.54-1.0, respectively. For ICDAS II, sensitivity and specificity were 1.0 and 0.17, respectively. For Spectra, data and images were inconclusive due to signal intereference from the amalgam restoration.Conclusions:Using this in-vitro model, CS and DD were able to differentiate between sound and carious tissue at the MOR, but larger variation, less reliability, and poorer accuracy was observed for DD. Therefore, CS has the potential to detect secondary caries around amalgam restorations more accurately than the other investigated modalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.