Insulin signaling is critical for neuroplasticity, cerebral metabolism as well as for systemic energy metabolism. In rodent studies impaired brain insulin signaling with resultant insulin resistance (IR) modulates synaptic plasticity and the corresponding behavioral functions. Despite discoveries of central actions of insulin,
in-vivo
molecular mechanisms of brain IR until recently has proven difficult to study in the human brain. In the current study, we leveraged recent technological advances in molecular biology and herein report an increased number of exosomes enriched for L1CAM, a marker predominantly expressed in the brain, in subjects with major depressive disorder (MDD) as compared to age- and sex-matched healthy controls (HC). We also report increased concentration of the insulin receptor substrate-1 (IRS-1) in L1CAM
+
exosomes in subjects with MDD as compared to age- and sex-matched HC. We found a relationship between expression of IRS-1 in L1CAM
+
exosomes and systemic IR as assessed by homeostatic model assessment of IR in HC, but not in subjects with MDD. The increased IRS-1 levels in L1CAM
+
exosomes were greater in subjects with MDD and were associated with suicidality and anhedonia. Finally, our data suggested sex differences in serine-312 phosphorylation of IRS-1 in L1CAM
+
exosomes in subjects with MDD. These findings provide a starting point for creating mechanistic framework of brain IR in further development of personalized medicine strategies to effectively treat MDD.
Major depressive disorder (MDD) is a primary psychiatric illness worldwide; there is a dearth of new mechanistic models for the development of better therapeutic strategies. Although we continue to discover individual biological factors, a major challenge is the identification of integrated, multidimensional traits underlying the complex heterogeneity of depression and treatment outcomes. Here, we set out to ascertain the emergence of the novel mitochondrial mediator of epigenetic function acetyl-L-carnitine (LAC) in relation to previously described individual predictors of antidepressant responses to the insulin-sensitizing agent pioglitazone. Herein, we report that i) subjects with MDD and shorter leukocyte telomere length (LTL) show decreased levels of LAC, increased BMI, and a history of specific types of childhood trauma; and that ii) these multidimensional factors spanning mitochondrial metabolism, cellular aging, metabolic function, and childhood trauma provide more detailed signatures to predict longitudinal changes in depression severity in response to pioglitazone than individual factors. The findings of multidimensional signatures involved in the pathophysiology of depression and their role in predicting treatment outcomes provide a starting point for the development of a mechanistic framework linking biological networks and environmental factors to clinical outcomes in pursuit of personalized medicine strategies to effectively treat MDD.
This invited article ad memoriam of Bruce McEwen discusses emerging epigenetic mechanisms underlying the long and winding road from adverse childhood experiences to adult physiology and brain functions. The conceptual framework that we pursue suggest multidimensional biological pathways for the rapid regulation of neuroplasticity that utilize rapid non-genomic mechanisms of epigenetic programming of gene expression and modulation of metabolic function via mitochondrial metabolism. The current article also highlights how applying computational tools can foster the translation of basic neuroscience discoveries for the development of novel treatment models for mental illnesses, such as depression to slow the clinical manifestation of Alzheimer’s disease. Citing an expression that many of us heard from Bruce, while “It is not possible to roll back the clock,” deeper understanding of the biological pathways and mechanisms through which stress produces a lifelong vulnerability to altered mitochondrial metabolism can provide a path for compensatory neuroplasticity. The newest findings emerging from this mechanistic framework are among the latest topics we had the good fortune to discuss with Bruce the day before his sudden illness when walking to a restaurant in a surprisingly warm evening that preluded the snowstorm on December 18th, 2019. With this article, we wish to celebrate Bruce’s untouched love for Neuroscience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.