Reports of Guillain-Barré syndrome (GBS) have emerged during the Coronavirus disease 2019 (COVID-19) pandemic. This epidemiological and cohort study sought to investigate any causative association between COVID-19 infection and GBS. The epidemiology of GBS cases reported to the UK National Immunoglobulin Database was studied from 2016 to 2019 and compared to cases reported during the COVID-19 pandemic. Data were stratified by hospital trust and region, with numbers of reported cases per month. UK population data for COVID-19 infection were collated from UK public health bodies. In parallel, but separately, members of the British Peripheral Nerve Society prospectively reported incident cases of GBS during the pandemic at their hospitals to a central register. The clinical features, investigation findings and outcomes of COVID-19 (definite or probable) and non-COVID-19 associated GBS cases in his cohort were compared. The incidence of GBS treated in UK hospitals from 2016 to 2019 was 1.65–1.88 per 100 000 individuals per year. In 2020, GBS and COVID-19 incidences varied between regions and did not correlate with one another ( r = 0.06, 95% confidence interval: −0.56 to 0.63, P = 0.86). GBS incidence fell between March and May 2020 compared to the same months of 2016–19. In an independent cohort study, 47 GBS cases were reported (COVID-19 status: 13 definite, 12 probable, 22 non-COVID-19). There were no significant differences in the pattern of weakness, time to nadir, neurophysiology, CSF findings or outcome between these groups. Intubation was more frequent in the COVID-19 affected cohort (7/13, 54% versus 5/22, 23% in COVID-19-negative) likely related to COVID-19 pulmonary involvement. Although it is not possible to entirely rule out the possibility of a link this study finds no epidemiological or phenotypic clues of SARS-CoV-2 being causative of GBS. GBS incidence has fallen during the pandemic, which may be the influence of lockdown measures reducing transmission of GBS inducing pathogens such as Campylobacter jejuni and respiratory viruses.
Blood-brain barrier (BBB) dysfunction is a hallmark of neurological conditions such as multiple sclerosis (MS) and stroke. However, the molecular mechanisms underlying neurovascular dysfunction during BBB breakdown remain elusive. MicroRNAs (miRNAs) have recently emerged as key regulators of pathogenic responses, although their role in central nervous system (CNS) microvascular disorders is largely unknown. We have identified miR-155 as a critical miRNA in neuroinflammation at the BBB. miR-155 is expressed at the neurovascular unit of individuals with MS and of mice with experimental autoimmune encephalomyelitis (EAE). In mice, loss of miR-155 reduced CNS extravasation of systemic tracers, both in EAE and in an acute systemic inflammation model induced by lipopolysaccharide. In cultured human brain endothelium, miR-155 was strongly and rapidly upregulated by inflammatory cytokines. miR-155 up-regulation mimicked cytokine-induced alterations in junctional organization and permeability, whereas inhibition of endogenous miR-155 partially prevented a cytokine-induced increase in permeability. Furthermore, miR-155 modulated brain endothelial barrier function by targeting not only cell-cell complex molecules such as annexin-2 and claudin-1, but also focal adhesion components such as DOCK-1 and syntenin-1. We propose that brain endothelial miR-155 is a negative regulator of BBB function that may constitute a novel therapeutic target for CNS neuroinflammatory disorders.
Background Reports of Guillain-Barre Syndrome (GBS) have emerged during the Coronavirus Disease 2019 (COVID-19) pandemic. This epidemiological and cohort study sought to investigate any causative association between COVID-19 infection and GBS. Methods The epidemiology of GBS cases reported via the UK National Immunoglobulin Database were studied from 2016-2019 and compared to cases reported during the COVID-19 pandemic. For the cohort study, members of the British Peripheral Nerve Society reported all cases of GBS during the pandemic. The clinical features, investigation findings and outcomes of COVID-19 (definite or probable) and non-COVID-19 associated GBS cases were compared. Results The UK GBS incidence from 2016-2019 was 1.65-1.88 per 100,000 people per year. GBS and COVID-19 incidence varied between regions and did not correlate (r = 0.06, 95% CI -0.56 to 0.63, p=0.86). GBS incidence fell between March and May 2020 compared to the same months of 2016-2019. Forty-seven GBS cases were included in the cohort study (13 definite, 12 probable COVID-19 and 22 non-COVID-19). There were no significant differences in the pattern of weakness, time to nadir, neurophysiology, CSF findings or outcome. Intubation was more frequent in the COVID-19+ve cohort (7/13, 54% vs 5/22, 23% in COVID negative) thought to be related directly to COVID-19 pulmonary involvement. Conclusions This study finds no epidemiological or phenotypic clues of SARS-CoV-2 being causative of GBS. GBS incidence has fallen during the pandemic which may be the influence of lockdown measures reducing transmission of GBS inducing pathogens such as Campylobacter jejuni and respiratory viruses.
Pro-inflammatory cytokine-induced activation of nuclear factor, NF-κB has an important role in leukocyte adhesion to, and subsequent migration across, brain endothelial cells (BECs), which is crucial for the development of neuroinflammatory disorders such as multiple sclerosis (MS). In contrast, microRNA-146a (miR-146a) has emerged as an anti-inflammatory molecule by inhibiting NF-κB activity in various cell types, but its effect in BECs during neuroinflammation remains to be evaluated. Here, we show that miR-146a was upregulated in microvessels of MS-active lesions and the spinal cord of mice with experimental autoimmune encephalomyelitis. In vitro, TNFα and IFNγ treatment of human cerebral microvascular endothelial cells (hCMEC/D3) led to upregulation of miR-146a. Brain endothelial overexpression of miR-146a diminished, whereas knockdown of miR-146a augmented cytokine-stimulated adhesion of T cells to hCMEC/D3 cells, nuclear translocation of NF-κB, and expression of adhesion molecules in hCMEC/D3 cells. Furthermore, brain endothelial miR-146a modulates NF-κB activity upon cytokine activation through targeting two novel signaling transducers, RhoA and nuclear factor of activated T cells 5, as well as molecules previously identified, IL-1 receptor-associated kinase 1, and TNF receptor-associated factor 6. We propose brain endothelial miR-146a as an endogenous NF-κB inhibitor in BECs associated with decreased leukocyte adhesion during neuroinflammation.
Background: The roles of amyloid-β and tau in the degenerative process of Alzheimer’s disease (AD) remain uncertain. [18F]AV-45 and [18F]AV-1451 PET quantify amyloid-β and tau pathology, respectively, while diffusion tractography enables detection of their microstructural consequences. Objective: Examine the impact of amyloid-β and tau pathology on the structural connectome and cognition, in mild cognitive impairment (MCI) and AD. Methods: Combined [18F]AV-45 and [18F]AV-1451 PET, diffusion tractography, and cognitive assessment in 28 controls, 32 MCI, and 26 AD patients. Results: Hippocampal connectivity was reduced to the thalami, right lateral orbitofrontal, and right amygdala in MCI; alongside the insula, posterior cingulate, right entorhinal, and numerous cortical regions in AD (all p < 0.05). Hippocampal strength inversely correlated with [18F]AV-1451 SUVr in MCI (r = –0.55, p = 0.049) and AD (r = –0.57, p = 0.046), while reductions in hippocampal connectivity to ipsilateral brain regions correlated with increased [18F]AV-45 SUVr in those same regions in MCI (r = –0.33, p = 0.003) and AD (r = –0.31, p = 0.006). Cognitive scores correlated with connectivity of the right temporal pole in MCI (r = –0.60, p = 0.035) and left hippocampus in AD (r = 0.69, p = 0.024). Clinical Dementia Rating Scale scores correlated with [18F]AV-1451 SUVr in multiple areas reflecting Braak stages I-IV, including the right (r = 0.65, p = 0.004) entorhinal cortex in MCI; and Braak stages III-VI, including the right (r = 0.062, p = 0.009) parahippocampal gyrus in AD. Conclusion: Reductions in hippocampal connectivity predominate in the AD connectome, correlating with hippocampal tau in MCI and AD, and with amyloid-β in the target regions of those connections. Cognitive scores correlate with microstructural changes and reflect the accumulation of tau pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.