While the ecology and evolution of partial migratory systems (defined broadly to include skip spawning) have been well studied, we are only beginning to understand how partial migratory populations are responding to ongoing environmental change. Environmental change can lead to differences in the fitness of residents and migrants, which could eventually lead to changes in the frequency of the strategies in the overall population. Here, we address questions concerning the life history of the endangered Gila cypha (humpback chub) in the regulated Colorado River and the unregulated tributary and primary spawning area, the Little Colorado River. We develop eight multistate models for the population based on three movement hypotheses, in which states are defined in terms of fish size classes and river locations. We fit these models to mark–recapture data collected in 2009–2012. We compare survival and growth estimates between the Colorado River and Little Colorado River and calculate abundances for all size classes. The best model supports the hypotheses that larger adults spawn more frequently than smaller adults, that there are residents in the spawning grounds, and that juveniles move out of the Little Colorado River in large numbers during the monsoon season (July–September). Monthly survival rates for G. cypha in the Colorado River are higher than in the Little Colorado River in all size classes; however, growth is slower. While the hypothetical life histories of life-long residents in the Little Colorado River and partial migrants spending most of its time in the Colorado River are very different, they lead to roughly similar fitness expectations when we used expected number of spawns as a proxy. However, more research is needed because our study period covers a period of years when conditions in the Colorado River for G. cypha are likely to have been better than has been typical over the last few decades.
Introductions of nonnative salmonids, such as rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta, have affected native fishes worldwide in unforeseen and undesirable ways. Predation and other interactions with nonnative rainbow trout and brown trout have been hypothesized as contributing to the decline of native fishes (including the endangered humpback chub Gila cypha) in the Colorado River, Grand Canyon. A multiyear study was conducted to remove nonnative fish from a 15-km segment of the Colorado River near the Little Colorado River confluence. We evaluated how sediment, temperature, fish prey availability, and predator abundance influenced the incidence of piscivory (IP) by nonnative salmonids. Study objectives were addressed through spatial (upstream and downstream of the Little Colorado River confluence) and temporal (seasonal and annual) comparisons of prey availability and predator abundance. Data were then evaluated by modeling the quantity of fish prey ingested by trout during the first 2 years (2003-2004) of the mechanical removal period. Field effort resulted in the capture of 20,000 nonnative fish, of which 90% were salmonids. Results indicated that the brown trout IP was higher (8-70%) than the rainbow trout IP (0.5-3.3%); however, rainbow trout were 50 times more abundant than brown trout in the study area. We estimated that during the study period, over 30,000 fish (native and nonnative species combined) were consumed by rainbow trout (21,641 fish) and brown trout (11,797 fish). On average, rainbow trout and brown trout ingested 85% more native fish than nonnative fish in spite of the fact that native fish constituted less than 30% of the small fish available in the study area. Turbidity may mediate piscivory directly by reducing prey detection, but
We evaluated the effects of hourly variation in flow caused by power load following at Glen Canyon Dam (“hydropeaking”) on the nearshore habitat use and growth of age‐0 rainbow trout Oncorhynchus mykiss downstream from the dam in the Colorado River, Arizona. Reduction in the extent of hydropeaking is a common element of restoration efforts in regulated rivers, but empirical support for such a practice is limited. Our assessment was based on a comparison of abundance in shoreline areas determined by electrofishing at different flows as well as analysis of otolith microstructure. The catch rates of age‐0 rainbow trout in nearshore areas were at least two‐ to fourfold higher at the daily minimum flow than at the daily maximum, indicating that most age‐0 rainbow trout do not maintain their position within immediate shoreline areas when flows are high. A striping pattern, identified by the presence of atypical daily increments formed every 7 d, was evident in over 50% of the 259 otoliths examined in 2003 but in only 6% of the 334 examined in 2004. The weekly pattern corresponded to a reduction in the extent of hourly flow fluctuations on Sundays during the growing season, which occurred in 2003 but not in 2004. The atypical increments were 25% wider than the adjacent increments and were indicative of significant (F15, 235 = 19.2, P < 0.0001) short‐term increases in otolith growth. The somatic growth rate among fish with otoliths where striping was present (11.2 mm/month) was slightly greater than that among fish with otoliths without striping (10.8 mm/month), but the difference was not significant. We provide evidence suggesting that otolith growth improved on Sundays in 2003 because it was the only day of the week when most age‐0 fish were found in immediate shoreline areas, where higher water temperatures and lower velocities provided better growing conditions.
Summary 1. Water managers must make difficult decisions about the allocation of streamflows between out‐of‐channel human uses and environmental flows for aquatic resources. However, the effects environmental flows on stream ecosystems are infrequently evaluated. 2. We used a 13‐year experiment in the regulated Bridge River, British Columbia, Canada, to determine whether an environmental flow release designed to increase salmonid productivity was successful. A hierarchical Bayesian model was used to compare juvenile Pacific salmon (Oncorhynchus spp.) abundance before and after the flow release. 3. We found that the total number of salmonids did increase after the release, but most of the gains could be attributed to the rewatering of a previously dry channel located immediately below the dam. In reaches that had flowing water during the baseline period, the response of individual salmon species to the increase in flow was variable, and there was little change in total abundance after the flow release. Our results were inconsistent with both habitat modelling, which predicted a decrease in habitat quality with increasing flow, and holistic instream flow approaches, which imply greater benefits with larger flows. 4. We question whether biotic responses to flow changes can be predicted reliably with currently available methods and suggest that adaptive management or the use of decision tools that account for the uncertainty in the biotic response is required for instream flow decisions when the competing demands for water are great.
Introduced species are frequently implicated in declines of native species. In many cases, however, evidence linking introduced species to native declines is weak. Failure to make strong inferences regarding the role of introduced species can hamper attempts to predict population viability and delay effective management responses. For many species, mark-recapture analysis is the more rigorous form of demographic analysis. However, to our knowledge, there are no mark-recapture models that allow for joint modeling of interacting species. Here, we introduce a two-species mark-recapture population model in which the vital rates (and capture probabilities) of one species are allowed to vary in response to the abundance of the other species. We use a simulation study to explore bias and choose an approach to model selection. We then use the model to investigate species interactions between endangered humpback chub (Gila cypha) and introduced rainbow trout (Oncorhynchus mykiss) in the Colorado River between 2009 and 2016. In particular, we test hypotheses about how two environmental factors (turbidity and temperature), intraspecific density dependence, and rainbow trout abundance are related to survival, growth, and capture of juvenile humpback chub. We also project the long-term effects of different rainbow trout abundances on adult humpback chub abundances. Our simulation study suggests this approach has minimal bias under potentially challenging circumstances (i.e., low capture probabilities) that characterized our application and that model selection using indicator variables could reliably identify the true generating model even when process error was high. When the model was applied to rainbow trout and humpback chub, we identified negative relationships between rainbow trout abundance and the survival, growth, and capture probability of juvenile humpback chub. Effects on interspecific interactions on survival and capture probability were strongly supported, whereas support for the growth effect was weaker. Environmental factors were also identified to be important and in many cases stronger than interspecific interactions, and there was still substantial unexplained variation in growth and survival rates. The general approach presented here for combining mark-recapture data for two species is applicable in many other systems and could be modified to model abundance of the invader via other modeling approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.