Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
SUMMARY
Gene duplication is a major evolutionary force driving adaptation and speciation, as it allows for the acquisition of new functions and can augment or diversify existing functions. Here, we report a gene duplication event that yielded another outcome – the generation of antagonistic functions. One product of this duplication event – UPF3B – is critical for the nonsense-mediated RNA decay (NMD) pathway, while its autosomal counterpart – UPF3A – encodes an enigmatic protein previously shown to have trace NMD activity. Using loss-of-function approaches in vitro and in vivo, we discovered that UPF3A acts primarily as a potent NMD inhibitor that stabilizes hundreds of transcripts. Evidence suggests that UPF3A acquired repressor activity through simple impairment of a critical domain, a rapid mechanism that may have been widely used in evolution. Mice conditionally lacking UPF3A exhibit “hyper” NMD and display defects in embryogenesis and gametogenesis, consistent with UPF3A serving as a molecular rheostat that directs developmental events.
SUMMARY
The mechanisms dictating whether a cell proliferates or differentiates have undergone intense scrutiny but remain poorly understood. Here, we report that a central component in the nonsense-mediated RNA decay (NMD) pathway—UPF1—plays a key role in this decision by promoting the proliferative, undifferentiated cell state. UPF1 acts, in part, by destabilizing the NMD substrate encoding the TGFβ inhibitor, SMAD7, and stimulating TGFβ signaling. UPF1 also promotes the decay of mRNAs encoding many other proteins that oppose the proliferative, undifferentiated cell state. Neural differentiation is triggered when NMD is downregulated by neurally expressed microRNAs (miRNAs). This UPF1-miRNA circuitry is highly conserved and harbors negative feedback loops that act as a molecular switch. Our results suggest that the NMD RNA decay pathway collaborates with the TGF-β signaling pathway to lock-in the stem-like state, a cellular state that is stably reversed when neural differentiation signals that induce NMD-repressive miRNAs are received.
Summary
Host-associated microbial communities are influenced by both host genetics and environmental factors. However, factors controlling the human oral microbiome and their impact on disease remain to be investigated. To determine the combined and relative effects of host genotype and environment on oral microbiome composition and caries phenotypes, we profiled the supragingival plaque microbiome of 485 dizygotic and monozygotic twins aged five to eleven. Oral microbiome similarity always increased with shared host genotype, regardless of caries state. Additionally, although most of the variation in the oral microbiome was determined by environmental factors, highly heritable oral taxa were identified. The most heritable oral bacteria were not associated with caries state, did not tend to co-occur with other taxa, and decreased in abundance with age and sugar consumption frequency. Thus, while the human oral microbiome composition is influenced by host genetic background, potentially cariogenic taxa are likely not controlled by genetic factors.
Beneficial microorganisms for corals (BMCs) ameliorate environmental stress, but whether they can prevent mortality and the underlying host response mechanisms remains elusive. Here, we conducted omics analyses on the coral Mussismilia hispida exposed to bleaching conditions in a long-term mesocosm experiment and inoculated with a selected BMC consortium or a saline solution placebo. All corals were affected by heat stress, but the observed “post-heat stress disorder” was mitigated by BMCs, signified by patterns of dimethylsulfoniopropionate degradation, lipid maintenance, and coral host transcriptional reprogramming of cellular restructuration, repair, stress protection, and immune genes, concomitant with a 40% survival rate increase and stable photosynthetic performance by the endosymbiotic algae. This study provides insights into the responses that underlie probiotic host manipulation. We demonstrate that BMCs trigger a dynamic microbiome restructuring process that instigates genetic and metabolic alterations in the coral host that eventually mitigate coral bleaching and mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.