The purpose of this study was to determine whether any relationships were present between lower-body muscle structure and strength and power qualities. Fifteen elite male surfing athletes performed a battery of lower-body strength and power tests, including countermovement jump (CMJ), squat jump (SJ), isometric midthigh pull (IMTP), and had their lower-body muscle structure assessed with ultrasonography. In addition, lower-body muscle-tendon complex (MTC) stiffness and dynamic strength deficit (DSD) ratio were calculated from the CMJ and IMTP. Significant relationships of large to very large strength were observed between the vastus lateralis (VL) thickness of the left (LVL) and right (RVL) leg and peak force (PF) (r = 0.54-0.77, p < 0.01-0.04), peak velocity (PV) (r = 0.66-0.83, p < 0.01), and peak jump height (r = 0.62-0.80, p < 0.01) in the CMJ and SJ, as well as IMTP PF (r = 0.53-0.60, p = 0.02-0.04). Furthermore, large relationships were found between left lateral gastrocnemius (LG) pennation angle and SJ and IMTP PF (r = 0.53, p = 0.04, and r = 0.70, p < 0.01, respectively) and between LG and IMTP relative PF (r = 0.63, p = 0.01). Additionally, large relationships were identified between lower-body MTC stiffness and DSD ratio (r = 0.68, p < 0.01), right (LG) pennation angle (r = 0.51, p = 0.05), CMJ PF (r = 0.60, p = 0.02), and jump height (r = 0.53, p = 0.04). These results indicate that greater VL thickness and increased LG pennation angle are related to improved performance in the CMJ, SJ, and IMTP. Furthermore, these results suggest that lower-body MTC stiffness explains a large amount of variance in determining an athlete's ability to rapidly apply force during a dynamic movement.
The purpose of this study was to determine whether any significant associations were present between lower-body strength and power, and the performance of turning and aerial manoeuvres in elite surfing athletes. Eighteen competitive male surfers performed a battery of physical tests (countermovement jump (CMJ), squat jump (SJ), and isometric mid-thigh pull (IMTP)) during a single session, in addition to having their performance of turning and aerial manoeuvres ranked from highest to lowest. Significant associations were identified between turning manoeuvre ranking and; peak force in the CMJ, SJ and IMTP (ϱ=−0.737, p<0.01; ϱ=−0.856, p<0.01; ϱ=−0.683, p<0.01, respectively), as well as, peak velocity and jump height in the CMJ (ϱ=−0.560, p=0.02; ϱ=−0.529, p=0.02, respectively). No significant associations were identified between aerial manoeuvre ranking and any strength and power variables. These results suggest that surfing athletes that exhibit greater lower-body isometric and dynamic strength, and power also perform higher scoring turning manoeuvres during wave riding.
All performance variables, particularly CMJ height; time to 5-, 10-, and 15-m sprint paddle; sprint paddle PV; time to 400 m; and endurance paddling velocity, can effectively discriminate between S and NS competitive surfers, and this may be important for athlete profiling and training-program design.
The results demonstrate that a 2-h surfing training session is performed at a lower intensity than competitive heats. This is likely due to the onset of fatigue and a pacing strategy used by participants. Furthermore, surfing training sessions do not appear to appropriately condition surfers for competitive events. As a result, coaches working with surfing athletes should consider altering training sessions to incorporate repeated-effort sprint paddling to more effectively physically prepare surfers for competitive events.
The purpose of this study was to develop and evaluate a drop-and-stick (DS) test method and to assess dynamic postural control in senior elite (SE), junior elite (JE), and junior development (JD) surfers. Nine SE, 22 JE, and 17 JD competitive surfers participated in a single testing session. The athletes completed 5 drop-and-stick trials barefoot from a predetermined box height (0.5 m). The lowest and highest time-to-stabilization (TTS) trials were discarded, and the average of the remaining trials was used for analysis. The SE group demonstrated excellent single-measures repeatability (ICC = .90) for TTS, whereas the JE and JD demonstrated good single-measures repeatability (ICC .82 and .88, respectively). In regard to relative peak landing force (rPLF), SE demonstrated poor single-measures reliability compared with JE and JD groups. Furthermore, TTS for the SE (0.69 ± 0.13 s) group was significantly (P = .04) lower than the JD (0.85 ± 0.25 s). There were no significant (P = .41) differences in the TTS between SE (0.69 ± 0.13 s) and JE (0.75 ± 0.16 s) groups or between the JE and JD groups (P = .09). rPLF for the SE (2.7 ± 0.4 body mass; BM) group was significantly lower than the JE (3.8 ± 1.3 BM) and JD (4.0 ± 1.1 BM), with no significant (P = .63) difference between the JE and JD groups. A possible benchmark approach for practitioners would be to use TTS and rPLF as a qualitative measure of dynamic postural control using a reference scale to discriminate among groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.