We present a case of preserved corticospinal connectivity in a cortical tuber, in a 10 year-old boy with intractable epilepsy and tuberous sclerosis complex (TSC). The patient had multiple subcortical tubers, one of which was located in the right central sulcus. In preparation for epilepsy surgery, motor mapping, by neuronavigated transcranial magnetic stimulation (nTMS) coupled with surface electromyography (EMG) was performed to locate the primary motor cortical areas. The resulting functional motor map revealed expected corticospinal connectivity in the left precentral gyrus. Surprisingly, robust contralateral deltoid and tibialis anterior motor evoked potentials (MEPs) were also elicited with direct stimulation of the cortical tuber in the right central sulcus. MRI with diffusion tensor imaging (DTI) tractography confirmed corticospinal fibers originating in the tuber. As there are no current reports of preserved connectivity between a cortical tuber and the corticospinal tract, this case serves to highlight the functional interdigitation of tuber and eloquent cortex. Our case also illustrates the widening spectrum of neuropathological abnormality in TSC that is becoming apparent with modern MRI methodology. Finally, our finding underscores the need for further study of preserved function in tuber tissue during presurgical workup in patients with TSC.
The setup, operational procedures and performance of a cryogen-free device for producing hyperpolarized contrast agents using dissolution dynamic nuclear polarization (dDNP) in a preclinical imaging center is described. The polarization was optimized using the solid-state, DNP-enhanced NMR signal to calibrate the sample position, microwave and NMR frequency and power and flip angle. The polarization of a standard formulation to yield ~ 4 mL, 60 mM 1-13C-pyruvic acid in an aqueous solution was quantified in five experiments to 13C-P = (38 ± 6) % (19 ± 1) s after dissolution. The mono-exponential time constant of the build-up of the solid-state polarization was quantified to (1032 ± 22) s. We achieved a duty cycle of 1.5 h that includes sample loading, monitoring the polarization build-up, dissolution and preparation for the next run. After injection of the contrast agent in vivo, pyruvate, pyruvate hydrate, lactate, and alanine were observed, by measuring metabolite maps. Based on this work sequence, hyperpolarized 15N urea was obtained (15N-P = (5.6 ± 0.8) % (30 ± 3) s after dissolution).
High-throughput phenotypic screens leveraging biochemical perturbations, high-content readouts, and complex multicellular models could advance therapeutic discovery yet remain constrained by limitations of scale. To address this, we establish a method for compressing screens by pooling perturbations followed by computational deconvolution. Conducting controlled benchmarks with a highly bioactive small molecule library and a high-content imaging readout, we demonstrate increased efficiency for compressed experimental designs compared to conventional approaches. To prove generalizability, we apply compressed screening to examine transcriptional responses of patient-derived pancreatic cancer organoids to a library of tumor-microenvironment (TME)-nominated recombinant protein ligands. Using single-cell RNA-seq as a readout, we uncover reproducible phenotypic shifts induced by ligands that correlate with clinical features in larger datasets and are distinct from reference signatures available in public databases. In sum, our approach enables phenotypic screens that interrogate complex multicellular models with rich phenotypic readouts to advance translatable drug discovery as well as basic biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.