Extensive development of shale gas has generated some concerns about environmental impacts such as the migration of natural gas into water resources. We studied high gas concentrations in waters at a site near Marcellus Shale gas wells to determine the geological explanations and geochemical implications. The local geology may explain why methane has discharged for 7 years into groundwater, a stream, and the atmosphere. Gas may migrate easily near the gas wells in this location where the Marcellus Shale dips significantly, is shallow (∼1 km), and is more fractured. Methane and ethane concentrations in local water wells increased after gas development compared with predrilling concentrations reported in the region. Noble gas and isotopic evidence are consistent with the upward migration of gas from the Marcellus Formation in a free-gas phase. This upflow results in microbially mediated oxidation near the surface. Iron concentrations also increased following the increase of natural gas concentrations in domestic water wells. After several months, both iron and SO42− concentrations dropped. These observations are attributed to iron and SO42− reduction associated with newly elevated concentrations of methane. These temporal trends, as well as data from other areas with reported leaks, document a way to distinguish newly migrated methane from preexisting sources of gas. This study thus documents both geologically risky areas and geochemical signatures of iron and SO42− that could distinguish newly leaked methane from older methane sources in aquifers.
Methane (CH4) enters waters in hydrocarbon-rich basins because of natural processes and problems related to oil and gas wells. As a redox-active greenhouse gas, CH4 degrades water or emits to the atmosphere and contributes to climate change. To detect if methane migrated from hydrocarbon wells (i.e., anomalous methane), we examined 20 751 methane-containing groundwaters from the Upper Appalachian Basin (AB). We looked for concentrations (mg/L) that indicated AB brine salts (chloride concentrations ([Cl]) > 30; [Ca]/[Na] < 0.52) to detect natural methane, and we looked for concentrations of redox-active species ([SO4] ≥ 6; [Fe] ≥ 0.3) to detect anomalous methane. These indicators highlight natural contamination by methane-containing brines or recent onset of microbial oxidation of methane coupled to iron- or sulfate-reduction. We hypothesized that only waters recently contaminated by methane still exhibit high iron and sulfate concentrations. Of the AB samples, 17 (0.08%) from 12 sites indicated potential contamination. All were located in areas with high densities of shale-gas or conventional oil/gas wells. In contrast, in southwestern Pennsylvania where brines are shallow and coal, oil, and gas all have been extracted extensively, no sites of recent methane migration were detectable. Such indicators may help screen for contamination in some areas even without predrill measurements.
As natural gas has grown in importance as a global energy source, leakage of methane (CH4) from wells has sometimes been noted. Leakage of this greenhouse gas is important because it affects groundwater quality and, when emitted to the atmosphere, climate. We hypothesized that streams might be most contaminated by CH4 in the northern Appalachian Basin in regions with the longest history of hydrocarbon extraction activities. To test this, we searched for CH4contaminated streams Basin. Methane concentrations ([CH4]) for 529 stream sites are reported, in New York, West Virginia and mostly Pennsylvania. Despite targeting contaminated areas, the median [CH4], 1.1 µg/L, was lower than a recently identified threshold indicating potential contamination, 4.0 µg/L. [CH4] values were higher in a few streams because they receive high-[CH4] groundwaters, often from upwelling seeps. By analogy to the more commonly observed type of groundwater seep known as abandoned mine drainage (AMD), we introduce the term, "gas leak discharge" (GLD) for these waters where they are not associated with coal mines. GLD and AMD, observed in all parts of the study area, are both CH4-rich. Surprisingly, the region of oldest and most productive oil / gas development did not show the highest median for stream [CH4]. Instead, the median was statistically highest where dense coal mining was accompanied by conventional and unconventional oil and gas development, emphasizing the importance of CH4 contamination from coal mines into streams.
Understanding emissions of methane from legacy and ongoing shale gas development requires both regional studies that assess the frequency of emissions and case studies that assess causation. We present the first direct measurements of emissions in a case study of a putatively leaking gas well in the largest shale gas play in the United States. We quantify atmospheric methane emissions in farmland >2 km from the nearest shale gas well cited for casing and cementing issues. We find that emissions are highly heterogeneous as they travel long distances in the subsurface. Emissions were measured near observed patches of dead vegetation and methane bubbling from a stream. An eddy covariance flux tower, chamber flux measurements, and a survey of enhancements of the near-surface methane mole fraction were used to quantify emissions and evaluate the spatial and temporal variability. We combined eddy covariance measurements with the survey of the methane mole fraction to estimate total emissions over the study area (2,800 m2). Estimated at ∼6 kg CH4 day–1, emissions were spatially heterogeneous but showed no temporal trends over 6 months. The isotopic signature of the atmospheric CH4 source (δ13CH4) was equal to −29‰, consistent with methane of thermogenic origin and similar to the isotopic signature of the gas reported from the nearest shale gas well. While the magnitude of emissions from the potential leak is modest compared to large emitters identified among shale gas production sites, it is large compared to estimates of emissions from single abandoned wells. Since other areas of emissions have been identified close to this putatively leaking well, our estimate of emissions likely represents only a portion of total emissions from this event. More comprehensive quantification will require more extensive spatial and temporal sampling of the locations of gas migration to the surface as well as an investigation into the mechanisms of subsurface gas migration. This work highlights an example of atmospheric methane emissions from potential stray gas migration at a location far from a well pad, and further research should explore the frequency and mechanisms behind these types of events to inform careful and strategic natural gas development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.