Triple-negative breast cancer (TNBC) is a highly diverse group of cancers, and subtyping is necessary to better identify molecular-based therapies. In this study, we analyzed gene expression (GE) profiles from 21 breast cancer data sets and identified 587 TNBC cases. Cluster analysis identified 6 TNBC subtypes displaying unique GE and ontologies, including 2 basal-like (BL1 and BL2), an immunomodulatory (IM), a mesenchymal (M), a mesenchymal stem-like (MSL), and a luminal androgen receptor (LAR) subtype. Further, GE analysis allowed us to identify TNBC cell line models representative of these subtypes. Predicted "driver" signaling pathways were pharmacologically targeted in these cell line models as proof of concept that analysis of distinct GE signatures can inform therapy selection. BL1 and BL2 subtypes had higher expression of cell cycle and DNA damage response genes, and representative cell lines preferentially responded to cisplatin. M and MSL subtypes were enriched in GE for epithelial-mesenchymal transition, and growth factor pathways and cell models responded to NVP-BEZ235 (a PI3K/mTOR inhibitor) and dasatinib (an abl/src inhibitor). The LAR subtype includes patients with decreased relapse-free survival and was characterized by androgen receptor (AR) signaling. LAR cell lines were uniquely sensitive to bicalutamide (an AR antagonist). These data may be useful in biomarker selection, drug discovery, and clinical trial design that will enable alignment of TNBC patients to appropriate targeted therapies.
Purpose-To prospectively identify markers of response to therapy and outcome in an organsparing trial for advanced oropharyngeal cancer.Patients and Methods-Pretreatment biopsies were examined for expression of epidermal growth factor receptor (EGFR), p16, Bcl-xL, and p53 as well as for p53 mutation. These markers Authors' Disclosures of Potential Conflicts of Interest:Although all authors completed the disclosure declaration, the following author (s) indicated a financial or other interest that is relevant to the subject matter under consideration in this article. Certain relationships marked with a "U" are those for which no compensation was received; those relationships marked with a "C" were compensated. For a detailed description of the disclosure categories, or for more information about ASCO's conflict of interest policy, please refer to the Author Disclosure were assessed for association with high-risk human papillomavirus (HPV), response to therapy, and survival. Patient variables included smoking history, sex, age, primary site, tumor stage, and nodal status.Results-EGFR expression was inversely associated with response to induction chemotherapy (IC) (P = .01), chemotherapy/radiotherapy (CRT; P = .055), overall survival (OS; P = .001), and diseasespecific survival (DSS; P = .002) and was directly associated with current smoking (P = .04), female sex (P = .053), and lower HPV titer (P = .03). HPV titer was significantly associated with p16 expression (P < .0001); p16 was significantly associated with response to IC (P = .008), CRT (P = . 009), OS (P = .001), and DSS (P = .003). As combined markers, lower HPV titer and high EGFR expression were associated with worse OS (ρ EGFR = 0.008; ρ HPV = 0.03) and DSS (ρ EGFR = 0.01; ρ HPV = 0.016). In 36 of 42 biopsies, p53 was wild-type, and only one HPV-positive tumor had mutant p53. The combination of low p53 and high Bcl-xL expression was associated with poor OS (P = . 005) and DSS (P = .002).Conclusion-Low EGFR and high p16 (or higher HPV titer) expression are markers of good response to organ-sparing therapy and outcome, whereas high EGFR expression, combined low p53/ high Bcl-xL expression, female sex, and smoking are associated with a poor outcome. Smoking cessation and strategies to target EGFR and Bcl-xL are important adjuncts to the treatment of oropharyngeal cancer.
Neoadjuvant chemotherapy (NAC) induces a pathologic complete response (pCR) in approximately 30% of patients with triple-negative breast cancers (TNBC). In patients lacking a pCR, NAC selects a subpopulation of chemotherapy-resistant tumor cells. To understand the molecular underpinnings driving treatment-resistant TNBCs, we performed comprehensive molecular analyses on the residual disease (RD) of 74 clinically-defined TNBCs after NAC including next-generation sequencing (NGS) on 20 matched pre-treatment biopsies. Combined NGS and digital RNA expression analysis identified diverse molecular lesions and pathway activation in drug-resistant tumor cells. Ninety percent of the tumors contained a genetic alteration potentially treatable with a currently available targeted therapy. Thus, profiling residual TNBCs after NAC identifies targetable molecular lesions in the chemotherapy-resistant component of the tumor which may mirror micro-metastases destined to recur clinically. These data can guide biomarker-driven adjuvant studies targeting these micro-metastases to improve the outcome of patients with TNBC who do not respond completely to NAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.