Abstract. A new ice core drilled at the South Pole provides a 54 000-year paleoenvironmental record including the composition of the past atmosphere. This paper describes the SP19 chronology for the South Pole atmospheric gas record and complements a previous paper (Winski et al., 2019) describing the SP19 ice chronology. The gas chronology is based on a discrete methane (CH4) record with 20- to 190-year resolution. To construct the gas time scale abrupt changes in atmospheric CH4 during the glacial period and centennial CH4 variability during the Holocene were used to synchronize the South Pole gas record with analogous data from the West Antarctic Ice Sheet Divide ice core. Stratigraphic matching based on visual optimization was verified using an automated matching algorithm. The South Pole ice core recovers all expected changes in CH4 based on previous records. Smoothing of the atmospheric record due to gas transport in the firn is evident but relatively minor, despite the deep lock-in depth in the modern South Pole firn column. The new gas chronology, in combination with the existing ice age scale from Winski et al. (2019), allows a model-independent reconstruction of the gas age-ice age difference through the whole record, which will be useful for testing firn densification models.
Abstract. A new ice core drilled at the South Pole provides a 54 000-year paleoenvironmental record including the composition of the past atmosphere. This paper describes the SP19 chronology for the South Pole atmospheric gas record and complements a previous paper (Winski et al., 2019) describing the SP19 ice chronology. The gas chronology is based on a discrete methane (CH4) record with 20- to 190-year resolution. To construct the gas timescale, abrupt changes in atmospheric CH4 during the glacial period and centennial CH4 variability during the Holocene were used to synchronize the South Pole gas record with analogous data from the West Antarctic Ice Sheet Divide ice core. Stratigraphic matching based on visual optimization was verified using an automated matching algorithm. The South Pole ice core recovers all expected changes in CH4 based on previous records. Gas transport in the firn results in smoothing of the atmospheric gas record with a smoothing function spectral width that ranges from 30 to 78 years, equal to 3 % of the gas-age–ice-age difference, or Δage. The new gas chronology, in combination with the existing ice age scale from Winski et al. (2019), allows a model-independent reconstruction of the gas-age–ice-age difference through the whole record, which will be useful for testing firn densification models.
A comprehensive record (WHV2020) of explosive volcanic eruptions in the last 11,000 years is reconstructed from the West Antarctica Ice Sheet Divide deep ice core (WDC). The chronological list of 426 large volcanic eruptions in the Southern Hemisphere and the low latitudes during the Holocene are of the highest quality of all volcanic records from ice cores, owing to the high‐resolution chemical measurement of the ice core and the exceptionally accurate WDC timescale. No apparent trend is found in the frequency (number of eruptions per millennium) of volcanic eruptions, and the number of eruptions in the most recent millennium (1,000–2,000 CE) is only slightly higher than the average in the last 11 millennia. The atmospheric aerosol mass loading of climate‐impacting sulfur, estimated from measured volcanic sulfate deposition, is dominated by explosive eruptions with extraordinarily high sulfur mass loading. Signals of three major volcanic eruptions are detected in the second half of the 17th century (1700–1600) BCE when the Thera volcano in the eastern Mediterranean was suspected to have erupted; the fact that these signals are synchronous with three volcanic eruptions detected in Greenland ice cores suggests that these are likely eruptions in the low latitudes and none should be attributed exclusively to Thera. A number of eruptions with very high sulfur mass loading took place shortly before and during an early Holocene climatic episode, the so‐called 8.2 ka event, and are speculated to have contributed to the initiation and magnitude of the cold event.
Sea ice in the Southern Ocean exhibits some of the most pronounced seasonality in the global climate system. During late winter, Antarctica is surrounded by an average of 18.5 million km 2 of sea ice, diminishing to 3.1 million km 2 during summers (Parkinson, 2014;Shepherd et al., 2018). Despite rising global temperatures, Southern Ocean sea ice had remained remarkably stable until 2016, despite model projections predicting declining Antarctic sea ice (Turner & Comiso, 2017;Turner et al., 2015). Since 2016, the Southern Ocean has exhibited abrupt reductions in sea ice extent (Parkinson, 2019). However, consistent observations of Antarctic sea ice are restricted to the short satellite era (since 1979), which hinders our ability to disentangle anthropogenic changes from natural variability, to understand multi-decadal variability, or to investigate feedbacks with climate more broadly.The recently drilled South Pole ice core (SPC14; Casey et al., 2014) provides a new opportunity to advance our understanding of Holocene sea ice variability in the Southern Ocean. Recent studies have conclusively Abstract Variability in sea ice is a critical climate feedback, yet the seasonal behavior of Southern Hemisphere sea ice and climate across multiple timescales remains unclear. Here, we develop a seasonally resolved Holocene sea salt record using major ion measurements of the South Pole Ice Core (SPC14). We combine the SPC14 data with the GEOS-Chem chemical transport model to demonstrate that the primary sea salt source switches seasonally from open water (summer) to sea ice (winter), with wintertime variations disproportionately responsible for the centennial to millennial scale structure in the record. We interpret increasing SPC14 and circum-Antarctic Holocene sea salt concentrations, particularly between 8 and 10 ka, as reflecting a period of winter sea ice expansion. Between 5 and 6 ka, an anomalous drop in South Atlantic sector sea salt indicates a temporary sea ice reduction that may be coupled with Northern Hemisphere cooling and associated ocean circulation changes.Plain Language Summary Sea ice variability has a dramatic effect on regional and global climate. Because sea ice extent has such a large summer to winter difference, seasonally specific records of past sea ice conditions are necessary to properly interpret sea ice/climate relationships. Here, we present a sea salt record from the South Pole Ice Core, which represents Southern Hemisphere sea ice changes during the last 11,400 years. We use an atmospheric chemistry model to show that wintertime sea salt in the South Pole Ice Core comes mostly from salty snow originating from sea ice. Wintertime sea ice variations are responsible for most of the long-term variability in the South Pole sea salt record. Ice core data across Antarctica show increasing sea salt concentrations since 11,400 years ago, representing cooling and sea ice expansion, particularly between 8,000 and 10,000 years ago. Between 5,000 and 6,000 years ago, a drop in sea salt indicates an abrupt ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.