<p style='text-indent:20px;'>We consider a linear Fermi-Pasta-Ulam-Tsingou lattice with random spatially varying material coefficients. Using the methods of stochastic homogenization we show that solutions with long wave initial data converge in an appropriate sense to solutions of a wave equation. The convergence is strong and both almost sure and in expectation, but the rate is quite slow. The technique combines energy estimates with powerful classical results about random walks, specifically the law of the iterated logarithm.</p>
We consider a simple two-dimensional harmonic lattice with random, independent, and identically distributed masses. Using the methods of stochastic homogenization, we prove that solutions with initial data, which varies slowly relative to the lattice spacing, converge in an appropriate sense to solutions of an effective wave equation. The convergence is strong and almost sure. In addition, the role of the lattice's dimension in the rate of convergence is discussed. The technique combines energy estimates with powerful classical results about sub-Gaussian random variables.
In this paper we describe protocols which use a standard deck of cards to provide a perfectly sound zero-knowledge proof for Hamiltonian cycles and Flow Free puzzles. The latter can easily be extended to provide a protocol for a zero-knowledge proof of many-to-many k-disjoint path coverings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.