Background: Assemblages of fishes in lakes and reservoirs in the western USA are dominated by non-native, large-bodied, piscivorous fishes that lack a shared evolutionary history. Top predators in these crowded systems are often characterized by unstable population dynamics and poor somatic growth rates. One such assemblage is in Fish Lake, located in southern Utah, USA, in which introduced lake trout (Salvelinus namaycush, Walbaum) exhibit a bimodal growth pattern. A few lake trout in Fish Lake grow rapidly to large size typical of the species; whereas, most never grow beyond 600 mm total length. Objective: To inform competitive interactions in this evolutionarily novel fish assemblage that might cause the low recruitment to large body size in lake trout, we characterized trophic niche (from stable isotope analysis of C and N) of all fishes in the lake. Methods: We used a Bayesian mixing model to describe the trophic niche and infer diet of lake trout and their potential prey, and we used Bayesian ellipse analysis to identify potential areas of high competition within the food web. Large lake trout feed mostly on small lake trout and splake (Salvelinus namaycush, Walbaum x Salvelinus fontinalis, Mitchill) despite availability of abundant yellow perch. (Perca flavescens, Mitchill). Small lake trout and splake feed mostly on zooplankton and exhibit substantial overlap of their trophic niche implying competition for food. Yellow perch and Utah chub (Gila atraria, Girard; formerly an important food item for lake trout in Fish Lake) exhibit extreme overlap of their trophic niche implying strong competitive interactions. Results: Our data suggest that lack of recruitment to large body size in lake trout may result from a reduction in availability of Utah chub resulting from competitive interactions with yellow perch, and increased competition from introduced splake for available prey. Conclusion: Management actions that may help ameliorate the poor somatic growth rates of most lake trout include efforts to reduce perch populations or increase vulnerability of perch to predation by lake trout, and removal of splake as a competitor of small lake trout.
Background: Reservoir communities in the intermountain west are typically dominated by a mix of introduced fishes. Due to the non-coevolved interactions present in these communities, energy flow and trophic interactions may not facilitate optimal growth and survival for all species. It is difficult to predict how well each species will survive in such novel communities. One such community is in Jordanelle Reservoir in northern Utah, USA. Recently, low survival and recruitment of stocked rainbow trout (Onchorhynchus mykiss) have been observed in Jordanelle Reservoir. Objective: We characterize the food web structure of the fish community in Jordanelle reservoir to infer competitive or predatory interactions that might lead to a poor return of stocked rainbow trout. Methods: We performed a stable isotope analysis on the fish community in Jordanelle Reservoir and carried out niche space analyses using the software package Stable Isotope Bayesian Ellipse (SIBER) in R. Results: Small rainbow trout exhibit high competitive overlap with brown trout (Salmo trutta), smallmouth bass (Micropterus dolomieu), and yellow perch (Perca flavescens). In addition, large brown trout and large smallmouth bass may feed heavily on small rainbow trout. Conclusion: Food web analysis suggests that rainbow trout encounter a highly competitive and potentially high predation environment in Jordanelle reservoir, leading to observed low return rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.