Tiger nut is a valuable source of fiber, lipids, minerals, and carbohydrates. However, avenues for incorporating tiger nuts into food remain underexplored, especially in several tropical countries where the plant grows well. The current study investigated the effects of partially substituting wheat flour (WF) with tiger nut flour (TNF) on the physical and sensory properties of different bread types to evaluate the more amenable system for tiger nut incorporation. The substitution was done at WF:TNF ratio of 100 : 0, 90 : 10, 85 : 15, 80 : 20, 75 : 25, and 70 : 30 for butter bread (Bb), tea bread (Tb), and sugar bread (Sb). The results show that WF substitution with TNF increased bread brownness and color saturation and decreased lightness, showing the highest impact on Sb, followed by Tb and Bb. Additionally, bread-specific volume decreased significantly after 20% (Bb), 25% (Tb), and 30% (Sb) TNF substitution. Furthermore, substituting WF with 30% TNF increased crumb hardness from approx. 1.87 N to 3.64 N (Bb), 3.46 N to 8.14 N (Tb), and 6.71 N to 11.39 N (Sb) and caused significant increases to 17.80 N (Tb) and 21.08 N (Sb) after 3 d storage. Only a marginal effect on storage hardness (4.32 N) was observed for Bb. Substituting WF with 10% TNF for Bb or 25% TNF for Tb led to significantly higher consumer ( N = 56 ) scores for all attributes and overall acceptability. However, no significant effect on the overall acceptability of Sb was observed. Flash profiling showed frequently used descriptors for Bb as firm, moist, buttery, smooth, and astringent. After 10% TNF substitution, descriptors were chewy, firm, sweet, porous, dry, and caramel, and that of 30% TNF were grainy, chocolate, brown, nutty, and flaky. Substituting WF with TNF increased the lipids, fiber, and minerals content but decreased the protein and carbohydrate contents of bread. TNF substitution led to different physical and sensory effects depending on bread type, showing that Bb with 10% or Tb with 25% TNF is more comparable with the overall acceptance quality of 100% WF. The study is relevant for utilizing tiger nuts as an ingredient in bread products.
The objective of this study was to provide the optimum drying conditions to produce high-quality dried tiger nuts using hot-air drying. For this, we evaluated the effect of the whole, halved, and pulverized tiger nuts and air temperature (50 to 70°C) on the drying kinetics and quality of tiger nuts. The drying process generally followed a constant rate in the first 3 hours and a falling regime. We found the optimum drying conditions for tiger nuts to be crushed before convective hot-air drying at a temperature of 70°C. At this optimum condition, the predicted drying time, vitamin C content, reducing sugars, browning, brightness, redness, and yellowness was 780 min, 22.9 mg/100 mg dry weight, 157.01 mg/100 g dry weight, 0.21 Abs unit, 56.97, 1.6, and 17.0, respectively. The tiger nut’s reducing sugars increased from the 130.8 mg/100 dry weight in the raw tiger nuts to between 133.11 and 158.18 mg/100 dry weight after drying. The vitamin C degradation rate was highest in the uncut tiger nuts (32-35%) while in the halved and the pulverized samples, it was between 12 and 17%. The crushed samples’ effective moisture removal increased between 5.6- and 6.75-fold at the different air temperatures than that of the intact tiger nuts. The activation energy was 18.17 kJ/mol for the unbroken, 14.78 kJ/mol for the halved, and 26.61 kJ/mol for the pulverized tiger nut samples. The model MR = 0.997 exp − 0.02 t 1.266 + 0.0000056 t was the most suitable thin-layer drying model among the models examined for convective hot-air drying of tiger nuts. It is advisable to crush tiger nut before hot-air drying to produce better-quality flour for making milk beverages, cakes, biscuits, bread, porridge, and tiger nut-based breakfast cereals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.