Aerosol collection efficiency was studied for electrostatically charged fibrous filters (3M Filtrete TM , BMF-20F). In this study, collection efficiencies at moderate filter face velocities (0.5-2.5 m/s) representative of some high volume sampling applications was characterized. Experimental data and analytical theories of filter performance are less common in this flow regime since the viscous flow field assumption may not be representative of actual flow through the filter mat. Additionally, electrostatic fiber charge density is difficult to quantify, and measurements of aerosol collection efficiency are often used to calculate this fundamental parameter. The purpose of this study was to assess the relative influence of diffusion, inertial impaction, interception, and electrostatic filtration on overall filter performance. The effects of fiber charge density were quantified by comparing efficiency data for charged and uncharged filter media, where an isopropanol bath was used to eliminate electrostatic charge. The effects of particle charge were also quantified by test aerosols brought into the equilibrium Boltzmann charge distribution, and then using an electrostatic precipitator to separate out only those test particles with a charge of zero. Electrostatically charged filter media had collection efficiencies as high as 70-85% at 30 nm. Filter performance was reduced significantly (40-50% collection efficiency) when the electrostatic filtration component was eliminated. Experiments performed with zero charged NaCl particles showed that a significant increase in filter performance is attributable to an induction effect, where electrostatic fiber charge polarizes aerosol particles without charge. As filter face velocity increased the electrostatic filtration efficiency decreased since aerosol particles had less time to drift toward electrostatically charged fibers. Finally, experimental data at 0.5 m/s were compared to theoretical predictions and good agreement was found for both electrostatic and nonelectrostatic effects.
The formation and growth of UO2F2 particles by gas-phase UF6 hydrolysis remains of interest to actinide chemistry researchers.
Particle resuspension due to mechanical impulse was studied for spherical polymethylmethacrylate (pmma) particles ranging from 1.7 to 14.4 µm in diameter on titanium dioxide (TiO 2 ) and silicon dioxide (SiO 2 ) wafers. Dry powders were dispersed, electrostatically neutralized, and allowed to deposit under the influence of gravity. Contaminated surfaces were then mechanically excited with a 5 MHz piezoelectric transducer where surface accelerations (∼10 6 m/s 2 ) and resuspension ratios were quantified with laser Doppler vibrometry (LDV) and digital microscopy, respectively. For TiO 2 , experiments were performed over a broad range of relative humidity (25 to 95%) to assess the effects of capillary condensation. Resuspension was a monotonically decreasing function of relative humidity. Existing theories were used to separate data into two adhesion regimes based on capillary bridge formation: van der Waals (vdW) and capillary dominated adhesion. For relative humidity above 60%, resuspension forces were nondimensionalized by the theoretical capillary force. Resuspension data for all particle sizes and relative humidity were described by a single sigmoid function dependent on the dimensionless resuspension force. Below 60% relative humidity, resuspension forces were nondimensionalized by the vdW force calculated with Johnson-Kendall-Roberts adhesion theory. The experimental work of adhesion (pmma-TiO 2 ) was optimized such that the dimensionless resuspension curves, for capillary and vdW forces, had equivalent dimensionless resuspension forces at 50% resuspension. The calculated value, 0.047 J/m 2 , was within the range of values expected from other published works. Resuspension was not observed for particles on SiO 2 substrates. This result was attributed to electrostatic surface charge patches where particle charge and surface resistivities were measured to analyze the relative influence of electrostatic adhesion forces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.