Background:In an effort to minimize rod fractures and nonunion in pedicle subtraction osteotomy (PSO) constructs, surgeons have adopted multirod constructs and interbody cages. Anterior column realignment (ACR) with posterior column osteotomies is a minimally invasive alternative to PSO in sagittal balance correction, however, there is a paucity of evidence with respect to rod survival.Methods:Three-dimensional (3D) finite-element-model of a T12-sacrum spine segment was used to compare a 25° PSO at L3 and an ACR with a posterior column osteotomy and 30° hyperlordotic interbody cage at L3–4. The amount of overall T12–S1 lordosis correction was the same for each condition. Each simulation included cobalt chromium alloy primary rods with: (1) PSO; (2) PSO with an interbody cage (IB) at L2–3 (PSO+IB); (3) PSO with accessory (A) rods and IB at L2–3 (PSO+IB+A); (4) PSO with satellite (S) rods and IB at L2–3 (PSO+IB+2S); (5) ACR; 6) ACR with satellite rods (ACR + 2S). A 400 N follower preload was simulated for each condition.Results:PSO condition had the largest rod stress of 286 MPa in flexion. Adding interbody support reduced the rod stress by 15%. The 4-rod constructs further reduced rod stress, with the satellite rod condition facilitating the largest reduction. The rod stress in the ACR+2S was equivalent to the PSO+2S, with 50% reduction in rod stress.Conclusion:The rod stress with an ACR was comparable to a PSO coupled with interbody support. These results suggest an ACR is a viable MIS alternative to a PSO without the need for a large posterior osteotomy.
Increased segmental lumbar lordosis is achievable with hyperlordotic cages after ALL resection. Increased cage height tended to increase the amount of lordosis achieved, although in some cases additional posterior bone resection was required to maximize lordosis. Further studies are needed to evaluate the impact on regional lumbar lordosis.
The MIS-ACR is one of the most technically demanding procedures performed from the lateral transpsoas approach. This procedure has the advantage of maintaining and improving spinal global alignment while minimizing blood loss and excessive tissue dissection. It comes with its own unique set of potentially catastrophic complications and should only be performed by surgeons proficient in both deformity correction and the lateral approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.