Purpose of review
Cell intrinsic and extrinsic perturbations to inflammatory signaling pathways are a hallmark of development and progression of hematologic malignancies. The interleukin 1 receptor-associated kinases (IRAKs) are a family of related signaling intermediates (IRAK1, IRAK2, IRAK3, IRAK4) that operate at the nexus of multiple inflammatory pathways implicated in the hematologic malignancies. In this review, we explicate the oncogenic role of these kinases and review recent therapeutic advances in the dawning era of IRAK-targeted therapy.
Recent findings
Emerging evidence places IRAK signaling at the confluence of adaptive resistance and oncogenesis in the hematologic malignancies and solid tissue tumors. Preclinical investigations nominate the IRAK kinases as targetable molecular dependencies in diverse cancers.
Summary
IRAK-targeted therapies that have matriculated to early phase trials are yielding promising preliminary results. However, studies of IRAK kinase signaling continue to defy conventional signaling models and raise questions as to the design of optimal treatment strategies. Efforts to refine IRAK signaling mechanisms in the malignant context will inspire deliberate IRAK-targeted drug development and informed combination therapy.
Dysregulation of innate immune signaling is a hallmark of hematologic malignancies. Recent therapeutic efforts to subvert aberrant innate immune signaling in MDS and AML have focused on the kinase IRAK4. IRAK4 inhibitors have achieved promising, though moderate, responses in pre-clinical studies and in clinical trials for MDS and AML. The reasons underlying the limited responses to IRAK4 inhibitors remain unknown. Here, we reveal that inhibiting IRAK4 in leukemic cells elicits functional complementation and compensation by its paralog, IRAK1. Using genetic approaches, we demonstrate that co-targeting IRAK1 and IRAK4 is required to suppress leukemic stem/progenitor cell (LSPC) function and induce differentiation in cell lines and patient-derived cells. While IRAK1 and IRAK4 are presumed to function primarily downstream of the proximal adapter MyD88, we found that complimentary and compensatory IRAK1 and IRAK4 dependencies in MDS/AML occur via non-canonical MyD88-independent pathways. Genomic and proteomic analyses revealed that IRAK1 and IRAK4 preserve the undifferentiated state of MDS/AML LSPCs by coordinating a network of pathways, including ones that converge on the PRC2 complex and JAK-STAT signaling. To translate these findings, we implemented a structure-based design of a potent and selective dual IRAK1 and IRAK4 inhibitor KME-2780. MDS/AML cell lines and patient-derived samples showed significant suppression of LSPCs in vitro and in xenograft studies when treated with KME-2780 as compared to selective IRAK4 inhibitors. Our results provide a mechanistic basis and rationale for co-targeting IRAK1 and IRAK4 for the treatment of cancers, including MDS/AML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.