England has been heavily affected by the SARS-CoV-2 pandemic, with severe ‘lockdown’ mitigation measures now gradually being lifted. The real-time pandemic monitoring presented here has contributed to the evidence informing this pandemic management throughout the first wave. Estimates on the 10 May showed lockdown had reduced transmission by 75%, the reproduction number falling from 2.6 to 0.61. This regionally varying impact was largest in London with a reduction of 81% (95% credible interval: 77–84%). Reproduction numbers have since then slowly increased, and on 19 June the probability of the epidemic growing was greater than 5% in two regions, South West and London. By this date, an estimated 8% of the population had been infected, with a higher proportion in London (17%). The infection-to-fatality ratio is 1.1% (0.9–1.4%) overall but 17% (14–22%) among the over-75s. This ongoing work continues to be key to quantifying any widespread resurgence, should accrued immunity and effective contact tracing be insufficient to preclude a second wave. This article is part of the theme issue ‘Modelling that shaped the early COVID-19 pandemic response in the UK’.
BackgroundShort-term forecasts of infectious disease can aid situational awareness and planning for outbreak response. Here, we report on multi-model forecasts of Covid-19 in the UK that were generated at regular intervals starting at the end of March 2020, in order to monitor expected healthcare utilisation and population impacts in real time.MethodsWe evaluated the performance of individual model forecasts generated between 24 March and 14 July 2020, using a variety of metrics including the weighted interval score as well as metrics that assess the calibration, sharpness, bias and absolute error of forecasts separately. We further combined the predictions from individual models into ensemble forecasts using a simple mean as well as a quantile regression average that aimed to maximise performance. We compared model performance to a null model of no change.ResultsIn most cases, individual models performed better than the null model, and ensembles models were well calibrated and performed comparatively to the best individual models. The quantile regression average did not noticeably outperform the mean ensemble.ConclusionsEnsembles of multi-model forecasts can inform the policy response to the Covid-19 pandemic by assessing future resource needs and expected population impact of morbidity and mortality.
England has been heavily affected by the SARS-CoV-2 pandemic, with severe 'lock-down' mitigation measures now gradually being lifted. The real-time pandemic monitoring presented here has contributed to the evidence informing this pandemic management. Estimates on the 10th May showed lock-down had reduced transmission by 75%, the reproduction number falling from 2.6 to 0.61. This regionally-varying impact was largest in London of 81% (95% CrI: 77%-84%). Reproduction numbers have since slowly increased, and on 19th June the probability that the epidemic is growing was greater than 50% in two regions, South West and London. An estimated 8% of the population had been infected, with a higher proportion in London (17%). The infection-to-fatality ratio is 1.1% (0.9%-1.4%) overall but 17% (14%-22%) among the over-75s. This ongoing work will be key to quantifying any widespread resurgence should accrued immunity and effective contact tracing be insufficient to preclude a second wave.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.