A sessile droplet partially wets a planar solid support. We study the linear stability of this spherical-cap base state to disturbances whose three-phase contact line is (i) pinned, (ii) moves with fixed contact angle and (iii) moves with a contact angle that is a smooth function of the contact-line speed. The governing hydrodynamic equations for inviscid motions are reduced to a functional eigenvalue problem on linear operators, which are parameterized by the base-state volume through the static contact angle and contact-line mobility via a spreading parameter. A solution is facilitated using inverse operators for disturbances (i) and (ii) to report frequencies and modal shapes identified by a polar $k$ and azimuthal $l$ wavenumber. For the dynamic contact-line condition (iii), we show that the disturbance energy balance takes the form of a damped-harmonic oscillator with ‘Davis dissipation’ that encompasses the dynamic effects associated with (iii). The effect of the contact-line motion on the dissipation mechanism is illustrated. We report an instability of the super-hemispherical base states with mobile contact lines (ii) that correlates with horizontal motion of the centre-of-mass, called the ‘walking’ instability. Davis dissipation from the dynamic contact-line condition (iii) can suppress the instability. The remainder of the spectrum exhibits oscillatory behaviour. For the hemispherical base state with mobile contact line (ii), the spectrum is degenerate with respect to the azimuthal wavenumber. We show that varying either the base-state volume or contact-line mobility lifts this degeneracy. For most values of these symmetry-breaking parameters, a certain spectral ordering of frequencies is maintained. However, because certain modes are more strongly influenced by the support than others, there are instances of additional modal degeneracies. We explain the physical reason for these and show how to locate them.
A capillary surface is an interface between two fluids whose shape is determined primarily by surface tension. Sessile drops, liquid bridges, rivulets, and liquid drops on fibers are all examples of capillary shapes influenced by contact with a solid. Capillary shapes can reconfigure spontaneously or exhibit natural oscillations, reflecting static or dynamic instabilities, respectively. Both instabilities are related, and a review of static stability precedes the dynamic case. The focus of the dynamic case here is the hydrodynamic stability of capillary surfaces subject to constraints of (a) volume conservation, (b) contact-line boundary conditions, and (c) the geometry of the supporting surface.
High-speed images of driven sessile water drops recorded under frequency scans are analysed for resonance peaks, resonance bands and hysteresis of characteristic modes. Visual mode recognition using back-lit surface distortion enables modes to be associated with frequencies, aided by the identifications in Part 1 (Bostwick & Steen, J. Fluid Mech., vol. 760, 2014, pp. 5–38). Part 1 is a linear stability analysis that predicts how inviscid drop spectra depend on base state geometry. Theoretically, the base states are spherical caps characterized by their ‘flatness’ or fraction of the full sphere. Experimentally, quiescent shapes are controlled by pinning the drop at a circular contact line on the flat substrate and varying the drop volume. The response frequencies of the resonating drop are compared with Part 1 predictions. Agreement with theory is generally good but does deteriorate for flatter drops and higher modes. The measured frequency bands agree better with an extended model, introduced here, that accounts for forcing and weak viscous effects using viscous potential flow. As the flatness varies, regions are predicted where modal frequencies cross and where the spectra crowd. Frequency crossings and spectral crowding favour interaction of modes. Modal interactions of two kinds are documented, called ‘mixing’ and ‘competing’. Mixed modes are two pure modes superposed with little evidence of hysteresis. In contrast, modal competition involves hysteresis whereby one or the other mode disappears depending on the scan direction. Perhaps surprisingly, a linear inviscid irrotational theory provides a useful framework for understanding observations of forced sessile drop oscillations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.