A critical step for fitting a linear mixing model to hyperspectral imagery is the estimation of the abundances. The abundances are the percentage of each endmember within a given pixel; therefore, they should be non-negative and sum to one. With the advent of kernel based algorithms for hyperspectral imagery, kernel based abundance estimates have become necessary. This paper presents such an algorithm that estimates the abundances in the kernel feature space while maintaining the non-negativity and sum-to-one constraints. The usefulness of the algorithm is shown using the AVIRIS Cuprite, Nevada image.
Subpixel detection is a challenging problem in hyperspectral imagery analysis. Since the target size is smaller than the size of a pixel, detection algorithms must rely solely on spectral information. A number of different algorithms have been developed over the years to accomplish this task, but most detectors have taken either a purely statistical or a physics-based approach to the problem. We present two new hybrid detectors that take advantage of these approaches by modeling the background using both physics and statistics. Results demonstrate improved performance over the well known AMSD and ACE subpixel algorithms in experiments that include multiple targets, images, and area types--especially when dealing with weak targets in complex backgrounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.