SUMMARYChromosomally integrated human herpesvirus 6 (ciHHV-6) is a condition in which the complete HHV-6 genome is integrated into the host germ line genome and is vertically transmitted in a Mendelian manner. The condition is found in less than 1% of controls in the USA and UK, but has been found at a somewhat higher prevalence in transplant recipients and other patient populations in several small studies. HHV-6 levels in whole blood that exceed 5.5 log10 copies/ml are strongly suggestive of ciHHV-6. Monitoring DNA load in plasma and serum is unreliable, both for identifying and for monitoring subjects with ciHHV-6 due to cell lysis and release of cellular DNA. High HHV-6 DNA loads associated with ciHHV-6 can lead to erroneous diagnosis of active infection. Transplant recipients with ciHHV-6 may be at increased risk for bacterial infection and graft rejection. ciHHV-6 can be induced to a state of active viral replication in vitro. It is not known whether ciHHV-6 individuals are put at clinical risk by the use of drugs that have been associated with HHV-6 reactivation in vivo or in vitro. Nonetheless, we urge careful observation when use of such drugs is indicated in individuals known to have ciHHV-6. Little is known about whether individuals with ciHHV-6 develop immune tolerance for viral proteins. Further research is needed to determine the role of ciHHV-6 in disease. Copyright © 2011 John Wiley & Sons, Ltd.
Shortly after the discovery of human herpesvirus 6 (HHV-6), two distinct variants, HHV-6A and HHV-6B, were identified. In 2012, the International Committee on Taxonomy of Viruses (ICTV) classified HHV-6A and HHV-6B as separate viruses. This review outlines several of the documented epidemiological, biological, and immunological distinctions between HHV-6A and HHV-6B, which support the ICTV classification. The utilization of virus-specific clinical and laboratory assays for distinguishing HHV-6A and HHV-6B is now required for further classification. For clarity in biological and clinical distinctions between HHV-6A and HHV-6B, scientists and physicians are herein urged, where possible, to differentiate carefully between HHV-6A and HHV-6B in all future publications.
Reactivation of human herpesvirus-6 (HHV-6) frequently occurs following hematopoietic SCT (HSCT), and has been associated with clinical consequences in many patient populations. HHV-6 reactivation and HHV-6 encephalitis seem to occur more frequently in patients undergoing HSCT with cord blood (CB) as the stem cell source. We have conducted a systematic literature review and meta-analysis to investigate the clinical significance of this correlation. A systematic review of publications indexed in PubMed was performed for HSCT studies published over the past 10 years that fit inclusion criteria. Data on prevalences of HHV-6 reactivation and HHV-6 encephalitis post HSCT were abstracted from 19 papers. Meta-analyses were conducted to calculate combined prevalence estimates. The prevalences of HHV-6 reactivation and encephalitis were compared among CB vs non-CB HSCT. Prevalences of HHV-6 reactivation and HHV-6 encephalitis were significantly higher in patients receiving CB as the stem cell source than in patients receiving another stem cell source (72.0% vs 37.4%, Po0.0001; 8.3% vs 0.50%, Po0.0001, respectively). HHV-6 reactivation and HHV-6 encephalitis are significant complications in the post-HSCT setting, particularly in patients receiving CB as the stem cell source. Thus, patients undergoing umbilical CB transplantation should be closely monitored for HHV-6 reactivation.
Like other members of the Herpesviridae family, human herpesvirus (HHV)-6A and HHV-6B have developed a wide variety of strategies to modulate or suppress host immune responses and, thereby, facilitate their own spread and persistence in vivo. Long considered two variants of the same virus, HHV-6A and HHV-6B have recently been reclassified as distinct viral species, although the established nomenclature has been maintained. In this review, we summarize the distinctive profiles of interaction of these two viruses with the human immune system. Both HHV-6A and HHV-6B display a tropism for CD4+ T lymphocytes, but they can also infect, in a productive or nonproductive fashion, other cells of the immune system. However, there are important differences regarding the ability of each virus to infect cytotoxic effector cells, as HHV-6A has been shown to productively infect several of these cells, whereas HHV-6B infects them inefficiently at best. In addition to direct cytopathic effects, both HHV-6A and HHV-6B can interfere with immunologic functions to varying degrees via cytokine modulation, including blockade of IL-12 production by professional antigen-presenting cells, modulation of cell-surface molecules essential for T-cell activation, and expression of viral chemokines and chemokine receptors. Some of these effects are related to signaling through and downregulation of the viral receptor, CD46, a key molecule linking innate and adaptive immune responses. Increasing attention has recently been focused on the importance of viral interactions with dendritic cells, which may serve both as targets of virus-mediated immunosuppression and as vehicles for viral transfer to CD4+ T cells. Our deepening knowledge of the mechanisms developed by HHV-6A and HHV-6B to evade immunologic control may lead to new strategies for the prevention and treatment of the diseases associated with these viruses. Moreover, elucidation of these viral mechanisms may uncover new avenues to therapeutically manipulate or modulate the immune system in immunologically mediated human diseases.
In order to determine the role of human herpesvirus 6 (HHV-6) in human disease, several confounding factors, including methods of detection, types of controls, and the ubiquitous nature of the virus, must be considered. This is particularly problematic in the case of cancer, in which rates of detection vary greatly among studies. To determine what part, if any, HHV-6 plays in oncogenesis, a review of the literature was performed. There is evidence that HHV-6 is present in certain types of cancer; however, detection of the virus within tumor cells is insufficient for assigning a direct role of HHV-6 in tumorigenesis. Findings supportive of a causal role for a virus in cancer include presence of the virus in a large proportion of cases, presence of the virus in most tumor cells, and virus-induced in-vitro cell transformation. HHV-6, if not directly oncogenic, may act as a contributory factor that indirectly enhances tumor cell growth, in some cases by cooperation with other viruses. Another possibility is that HHV-6 may merely be an opportunistic virus that thrives in the immunodeficient tumor microenvironment. Although many studies have been carried out, it is still premature to definitively implicate HHV-6 in several human cancers. In some instances, evidence suggests that HHV-6 may cooperate with other viruses, including EBV, HPV, and HHV-8, in the development of cancer, and HHV-6 may have a role in such conditions as nodular sclerosis Hodgkin lymphoma, gastrointestinal cancer, glial tumors, and oral cancers. However, further studies will be required to determine the exact contributions of HHV-6 to tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.