OBJECTIVEThis study’s purpose was to improve understanding of the forces driving the complex mechanical interaction between embolic material and current stroke thrombectomy devices by analyzing the histological composition and strength of emboli retrieved from patients and by evaluating the mechanical forces necessary for retrieval of such emboli in a middle cerebral artery (MCA) bifurcation model.METHODSEmbolus analogs (EAs) were generated and embolized under physiological pressure and flow conditions in a glass tube model of the MCA. The forces involved in EA removal using conventional endovascular techniques were described, analyzed, and categorized. Then, 16 embolic specimens were retrieved from 11 stroke patients with large-vessel occlusions, and the tensile strength and response to stress were measured with a quasi-static uniaxial tensile test using a custom-made platform. Embolus compositions were analyzed and quantified by histology.RESULTSUniaxial tension on the EAs led to deformation, elongation, thinning, fracture, and embolization. Uniaxial tensile testing of patients’ emboli revealed similar soft-material behavior, including elongation under tension and differential fracture patterns. At the final fracture of the embolus (or dissociation), the amount of elongation, quantified as strain, ranged from 1.05 to 4.89 (2.41 ± 1.04 [mean ± SD]) and the embolus-generated force, quantified as stress, ranged from 63 to 2396 kPa (569 ± 695 kPa). The ultimate tensile strain of the emboli increased with a higher platelet percentage, and the ultimate tensile stress increased with a higher fibrin percentage and decreased with a higher red blood cell percentage.CONCLUSIONSCurrent thrombectomy devices remove emboli mostly by applying linear tensile forces, under which emboli elongate until dissociation. Embolus resistance to dissociation is determined by embolus strength, which significantly correlates with composition and varies within and among patients and within the same thrombus. The dynamic intravascular weakening of emboli during removal may lead to iatrogenic embolization.
OBJECTIVEThe development of new endovascular technologies and techniques for mechanical thrombectomy in stroke has greatly relied on benchtop simulators. This paper presents an affordable, versatile, and realistic benchtop simulation model for stroke.METHODSA test bed for embolic occlusion of cerebrovascular arteries and mechanical thrombectomy was developed with 3D-printed and commercially available cerebrovascular phantoms, a customized hydraulic system to generate physiological flow rate and pressure, and 2 types of embolus analogs (elastic and fragment-prone) capable of causing embolic occlusions under physiological flow.RESULTSThe test bed was highly versatile and allowed realistic, radiation-free mechanical thrombectomy for stroke due to large-vessel occlusion with rapid exchange of geometries and phantom types. Of the transparent cerebrovascular phantoms tested, the 3D-printed phantom was the easiest to manufacture, the glass model offered the best visibility of the interaction between embolus and thrombectomy device, and the flexible model most accurately mimicked the endovascular system during device navigation. None of the phantoms modeled branches smaller than 1 mm or perforating arteries, and none underwent realistic deformation or luminal collapse from device manipulation or vacuum. The hydraulic system created physiological flow rate and pressure leading to iatrogenic embolization during thrombectomy in all phantoms. Embolus analogs with known fabrication technique, structure, and tensile strength were introduced and consistently occluded the middle cerebral artery bifurcation under physiological flow, and their interaction with the device was accurately visualized.CONCLUSIONSThe test bed presented in this study is a low-cost, comprehensive, realistic, and versatile platform that enabled high-quality analysis of embolus–device interaction in multiple cerebrovascular phantoms and embolus analogs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.