Efficient seed germination and establishment are important traits for field and glasshouse crops. Large-scale germination experiments are laborious and prone to observer errors, leading to the necessity for automated methods. We experimented with five crop species, including tomato, pepper, Brassica, barley, and maize, and concluded an approach for large-scale germination scoring. Here, we present the SeedGerm system, which combines cost-effective hardware and open-source software for seed germination experiments, automated seed imaging, and machine-learning based phenotypic analysis. The software can process multiple image series simultaneously and produce reliable analysis of germination-and establishment-related traits, in both comma-separated values (CSV) and processed images (PNG) formats. In this article, we describe the hardware and software design in detail. We also demonstrate that SeedGerm could match specialists' scoring of radicle emergence. Germination curves were produced based on seed-level germination timing and rates rather than a fitted curve. In particular, by scoring germination across a diverse panel of Brassica napus varieties, SeedGerm implicates a gene important in abscisic acid (ABA) signalling in seeds. We compared SeedGerm with existing methods and concluded that it could have wide utilities in large-scale seed phenotyping and testing, for both research and routine seed technology applications.
The circadian clock is a finely balanced timekeeping mechanism that coordinates programmes of gene expression. It is currently unknown how the clock regulates expression of homoeologous genes in polyploids. Here, we generate a high-resolution time-course dataset to investigate the circadian balance between sets of 3 homoeologous genes (triads) from hexaploid bread wheat. We find a large proportion of circadian triads exhibit imbalanced rhythmic expression patterns, with no specific subgenome favoured. In wheat, period lengths of rhythmic transcripts are found to be longer and have a higher level of variance than in other plant species. Expression of transcripts associated with circadian controlled biological processes is largely conserved between wheat and Arabidopsis; however, striking differences are seen in agriculturally critical processes such as starch metabolism. Together, this work highlights the ongoing selection for balance versus diversification in circadian homoeologs and identifies clock-controlled pathways that might provide important targets for future wheat breeding.
Low-altitude aerial imaging, an approach that can collect large-scale plant imagery, has grown in popularity recently. Amongst many phenotyping approaches, unmanned aerial vehicles (UAVs) possess unique advantages as a consequence of their mobility, flexibility and affordability. Nevertheless, how to extract biologically relevant information effectively has remained challenging.Here, we present AIRMEASURER, an open-source and expandable platform that combines automated image analysis, machine learning and original algorithms to perform trait analysis using 2D/3D aerial imagery acquired by low-cost UAVs in rice (Oryza sativa) trials.We applied the platform to study hundreds of rice landraces and recombinant inbred lines at two sites, from 2019 to 2021. A range of static and dynamic traits were quantified, including crop height, canopy coverage, vegetative indices and their growth rates. After verifying the reliability of AirMeasurer-derived traits, we identified genetic variants associated with selected growth-related traits using genome-wide association study and quantitative trait loci mapping.We found that the AIRMEASURER-derived traits had led to reliable loci, some matched with published work, and others helped us to explore new candidate genes. Hence, we believe that our work demonstrates valuable advances in aerial phenotyping and automated 2D/3D trait analysis, providing high-quality phenotypic information to empower genetic mapping for crop improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.