Objective: The main aim of this study was to establish the relationship between strength, power characteristics, individual muscle stiffness, international tennis number (ITN), and stroke velocity (StV) in junior tennis players. Methods: Twenty one junior male tennis players (mean ± SD; age, 17.0 ± 0.8 years; height, 1.8 ± 0.1 m; body mass, 72.3 ± 5.8 kg; BMI 22.1 ± 1.5 kg/m 2), with an ITN ranging from 2 to 4, performed measurements regarding muscle stiffness of selected muscles involved in tennis strokes. StV (serve, forehand, and backhand), strength (maximum isometric strength) and power (medicine ball throws, squat jump, countermovement jump, and bench press) measurements were also performed (ICC = 0.803-0.998; CV = 0.3-6.4). Results: Moderate inverse correlations were found between serve velocity (SV) and ITN (r = −0.43; p = 0.05), and large positive correlations were observed between pectoralis majoris stiffness (PMStiff) (r = 0.53; p = 0.01), isometric wrist flexion (r = 0.58; p = 0.006) and ITN, respectively. PMStiff was moderately inversely correlated to forehand velocity (FV) (r = −0.45; p = 0.03) and gastrocnemius (GStiff) and infraspinatus stiffness (IStiff) positively to SV (r = 0.45; p = 0.04; r = 0.42; p = 0.05). No significant correlations were found regarding strength and power measurements. Conclusion: Greater stiffness values may enhance StV, especially when transferring power from lower to upper body. On the other hand, high scores could interfere in technical parameters that are key for velocity production in complex tennis strokes. Strength and power values proved to correlate poorly to StV in this particular sample of junior tennis players, possibly due to the multifactorial nature of tennis strokes and the possibility that they become more important as age and level increase.
The objective of this study was to analyze the effects of two 8-week neuromuscular training (NMT) interventions on selected physical indicators in young tennis players. Twenty-four junior male tennis players were assigned to a machine-based (MG) (n = 8), flywheel (FG) (n = 8) or a control training group (CG) (n = 8). Tests at baseline, week 4 and 8 included: countermovement jump (CMJ); speed (S; 5, 10, 15 m); agility (right [AR] and left [AL]); serve velocity (SV) and medicine ball throws (MBT; overhead [O], forehand [FH], backhand [BH]). MG and FG attained large positive effects at week 4 in CMJ, S 10 m; AR, AL and MBT FH only in FG. Regarding inter- to post-test, MG achieved large positive effects in MBT O, FH and both groups in BH. Large negative effects appeared for FG in S 5 and 10 m and AR and AL. Both NMT interventions led to positive effects from baseline to week 4 measures in CMJ, S 5 m, 10 m and agility and at week 8 in MBT. Conducting the same NMT for a longer period of time did not lead to the same improvements and other negative effects in FG appeared. Results indicate that performing these interventions with little exercise variability or load management, especially after technical-tactical sessions, could interpose further beneficial outcomes and initial gains could be impaired.
Purpose: (1) To analyze the associations between serve velocity (SV) and various single-joint upper-limb isometric force–time curve parameters, (2) to develop a prediction model based on the relationship between these variables, and (3) to determine whether these factors are capable of discriminating between tennis players with different SV performances. Method: A total of 17 high-performance tennis players performed 8 isometric tests of joints and movements included in the serve kinetic chain (wrist and elbow flexion [EF] and extension; shoulder flexion [SHF] and extension [SHE], internal [SHIR] and external rotation). Isometric force (IF), rate of force development (RFD), and impulse (IMP) at different time intervals (0–250 ms) were obtained for analysis. Results: Significant (P < .05 to P < .01) and moderate to very large correlations were found between SV and isometric force (IF), RFD and impulse (IMP) at different time intervals in all joint positions tested (except for the EF). Stepwise multiple regression analysis highlighted the importance of RFD in the SHIR from 0 to 50 milliseconds and isometric force (IF) in the SHF at 250 milliseconds on SV performance. Moreover, the discriminant analyses established SHIR RFD from 0 to 30 milliseconds as the most important factor discriminating players with different serve performances. Conclusions: Force–time parameters in upper-limb joints involved in the serve moderate to very largely influence SV. Findings suggest that the capability to develop force in short periods of time (<250 ms), especially in the shoulder joint, seems relevant to develop high SV in competition tennis players.
The main aim of this study was to investigate the acute effects of the use of a weighting set (Powerinstep®) on measures of stroke velocity (StV), accuracy and change of direction speed (CODS) in junior tennis players. A within-subjects design was used to evaluate seventeen (6 female and 11 male) tennis players (mean ± SD; 16.5 ± 1.3 years old; 1.75 ± 8.4 m; 67.0 ± 8.1 kg; 22.04 ± 1.8 kg/m 2) on StV of three specific tennis actions (serve, forehand and backhand) and CODS for the following conditions: wearing a 50, 100, 150, 200 g weight or no weight at all (baseline). No significant differences were found between conditions for forehand (F = 0.412; p = 0.799), backhand (F = 0.269; p = 0.897) and serve (F = 0.541; p = 0.706) velocity and forehand (F = 1.688; p = 0.161), backhand (F = 0.567; p = 0.687) and serve (F = 2.382; p = 0.059) accuracy and CODS (F = 0.416; p = 0.797). Small-to-moderate effect sizes (ES) negatively affecting StV when using 200 g compared to the baseline (ES = 0.48, 0.35 and 0.45) could be observed. Moderate (ES =-0.49) and trivial (ES =-0.14 and-0.16) ES for a higher accuracy score were noticed in serve, forehand and backhand 100 g compared to the baseline. Moreover, small ES (ES = 0.41) for improvement in 200 g CODS comparing to baseline conditions were found. These results indicate that the use of a weighting set does not significantly affect StV or CODS respectively. Notwithstanding, small-to-moderate changes show impact in accuracy and no variance in velocity production when using 100 g alongside faster execution in CODS when using 200 g.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.