The mammalian heart has a very limited regenerative capacity and, hence, heals by scar formation. Recent reports suggest that haematopoietic stem cells can transdifferentiate into unexpected phenotypes such as skeletal muscle, hepatocytes, epithelial cells, neurons, endothelial cells and cardiomyocytes, in response to tissue injury or placement in a new environment. Furthermore, transplanted human hearts contain myocytes derived from extra-cardiac progenitor cells, which may have originated from bone marrow. Although most studies suggest that transdifferentiation is extremely rare under physiological conditions, extensive regeneration of myocardial infarcts was reported recently after direct stem cell injection, prompting several clinical trials. Here, we used both cardiomyocyte-restricted and ubiquitously expressed reporter transgenes to track the fate of haematopoietic stem cells after 145 transplants into normal and injured adult mouse hearts. No transdifferentiation into cardiomyocytes was detectable when using these genetic techniques to follow cell fate, and stem-cell-engrafted hearts showed no overt increase in cardiomyocytes compared to sham-engrafted hearts. These results indicate that haematopoietic stem cells do not readily acquire a cardiac phenotype, and raise a cautionary note for clinical studies of infarct repair.
Objective An acquired uterine arteriovenous malformation (AVM) is a rare cause of vaginal bleeding and, although hysterectomy is the definitive therapy, transcatheter embolization (TCE) provides an alternative treatment option. This systematic review presents the indications, technique, and outcomes for transcatheter treatment of the acquired uterine AVMs. Study Design Literature databases were searched from 2003 to 2013 for eligible clinical studies, including the patient characteristics, procedural indication, results, complications, as well as descriptions on laterality and embolic agents utilized. Results A total of 40 studies were included comprising of 54 patients (average age of 33.4 years). TCE had a primary success rate with symptomatic control of 61% (31 patients) and secondary success rate of 91% after repeated embolization. When combined with medical therapy, symptom resolution was noted in 48 (85%) patients without more invasive surgical procedures. Conclusion Low-level evidence supports the role of TCE, including in the event of persistent bleeding following initial embolization, for the treatment of acquired uterine AVMs. The variety of embolic agents and laterality of approach delineate the importance of refining procedural protocols in the treatment of the acquired uterine AVM. Condensation A review on the management of patients with acquired uterine AVMs.
Cellular transplantation is emerging as a potential mechanism with which to augment myocyte number in diseased hearts. To date a number of cell types have been shown to successfully engraft into the myocardium, including fetal, neonatal, and embryonic stem cell-derived cardiomyocytes, skeletal myoblasts, and stem cells with apparent cardiomyogenic potential. Here we provide a review of studies wherein myocytes or stem cells with myogenic potential have been transplanted into the heart. In addition, issues pertaining to the tracking and functional consequences of cell transplantation are discussed.
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and third leading cause of cancer-related mortality worldwide. While surgical resection and transplantation are the standard first-line treatments for early-stage HCC, most patients do not fulfill criteria for surgery. Fortunately, catheter-directed and percutaneous locoregional approaches have evolved as major treatment modalities for unresectable HCC. Improved outcomes have been achieved with novel techniques which can be employed for diverse applications ranging from curative-intent for small localized tumors, to downstaging or bridging to resection and transplantation for early and intermediate disease, and locoregional control and palliation for advanced disease. This review explores recent advances in liver-directed techniques for HCC including bland transarterial embolization, chemoembolization, radioembolization, and ablative therapies, with a focus on patient selection, procedural technique, periprocedural management, and outcomes.
Purpose To assess MRE-derived aortic shear stiffness (μMRE) measurements for: 1. Reproducibility 2. changes over the cardiac cycle; and 3. relationship with age. Methods Cardiac-gated aortic MRE was performed on 20 healthy volunteers (ages 20–73yrs). For assessing reproducibility of stiffness measurements, scans were repeated per volunteer. MRE wave images were analyzed to obtain stiffness of the abdominal aorta across the cardiac cycle, and comparisons were made with subject age. Results Analysis of concordance correlation coefficient between scans 1 and 2 showed that rc=0.86 (95% confidence interval (CI):0.77,0.94) with P<0.0001. Significantly higher μMRE was observed for all volunteers during end-systole when compared to end-diastole (P<0.0001). μMRE increased with age; end-systolic stiffness demonstrated a relatively stronger correlation with age (r=0.62,P=0.003) when compared to end-diastolic stiffness (r=0.51,P=0.023); the slopes of end-systole and end-diastole were found to be significantly different (P=0.011). normalμMRE at end-systole and end-diastole correlated linearly with PWV with an r=0.54(P=0.013) and r=0.58(P=0.008), respectively. Conclusion The results of this study indicate that MRE-derived aortic shear stiffness measurements are robust (reproducible and comparable to similar techniques). Mean μMRE was higher during end-systole when compared to end-diastole. μMRE was found to increase with age and showed a stronger correlation with end-systolic stiffness than with end-diastolic stiffness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.