Application of stable and radioisotope precursor/tracer experiments resulted in the identification of various phenylpropanoid, monolignol, and lignan metabolites involved in the biosynthesis of the cancer chemopreventive secoisolariciresinol diglucoside (SDG; 1)-containing ester-linked "polymer(s)" in flax (Linum usitatissimum) seed. Individual analysis of size-segregated flax seed capsules at five early stages of their development provided a metabolic profile of intermediates leading to "biopolymer" biosynthesis. The use of (1)H and (13)C NMR and HRMS analyses resulted in the identification of 6a-HMG (hydroxymethyl glutaryl) SDG (17) and 6a,6a'-di-HMG SDG (18) as the two major components of the ester-linked "biopolymer(s)". Based on metabolic tracer analyses and relative radioisotopic incorporations throughout each of these five stages of seed development, a biochemical pathway is proposed from phenylalanine to SDG (1), with subsequent mono- and di-substitutions of SDG (1) with HMG CoA. These metabolites then serve as precursors for formation of the SDG-HMG ester-linked oligomers. Results from this study will facilitate future isolation and characterization of the proteins and enzymes involved in biosynthesis of the SDG-HMG ester-linked oligomers in flax seed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.