Environmental stress leads to dramatic transcriptional reprogramming, which is central to plant survival. Although substantial knowledge has accumulated on how a few plant cis-regulatory elements (CREs) function in stress regulation, many more CREs remain to be discovered. In addition, the plant stress cis-regulatory code, i.e., how CREs work independently and/or in concert to specify stress-responsive transcription, is mostly unknown. On the basis of gene expression patterns under multiple stresses, we identified a large number of putative CREs (pCREs) in Arabidopsis thaliana with characteristics of authentic cis-elements. Surprisingly, biotic and abiotic responses are mostly mediated by two distinct pCRE superfamilies. In addition, we uncovered cis-regulatory codes specifying how pCRE presence and absence, combinatorial relationships, location, and copy number can be used to predict stress-responsive expression. Expression prediction models based on pCRE combinations perform significantly better than those based on simply pCRE presence and absence, location, and copy number. Furthermore, instead of a few master combinatorial rules for each stress condition, many rules were discovered, and each appears to control only a small subset of stress-responsive genes. Given there are very few documented interactions between plant CREs, the combinatorial rules we have uncovered significantly contribute to a better understanding of the cis-regulatory logic underlying plant stress response and provide prioritized targets for experimentation. machine learning | motif discovery | transcription factor binding site
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.