Nearly 30years ago, certain small, relatively nontoxic peptides were discovered to be capable of traversing the cell membrane. These cell-penetrating peptides, as they are now called, have been shown to not only be capable of crossing the cell membrane themselves but can also carry many different therapeutic agents into cells, including small molecules, plasmid DNA, siRNA, therapeutic proteins, viruses, imaging agents, and other various nanoparticles. Many cell-penetrating peptides have been derived from natural proteins, but several other cell-penetrating peptides have been developed that are either chimeric or completely synthetic. How cell-penetrating peptides are internalized into cells has been a topic of debate, with some peptides seemingly entering cells through an endocytic mechanism and others by directly penetrating the cell membrane. Although the entry mechanism is still not entirely understood, it seems to be dependent on the peptide type, the peptide concentration, the cargo the peptide transports, and the cell type tested. With new intracellular disease targets being discovered, cell-penetrating peptides offer an exciting approach for delivering drugs to these intracellular targets. There are hundreds of cell-penetrating peptides being studied for drug delivery, and ongoing studies are demonstrating their success both in vitro and in vivo.
Throughout the past decade, zwitterionic moieties have gained attention as constituents of biocompatible materials for exhibiting superhydrophilic properties that prevent nonspecific protein adsorption. Researchers have been working to synthesize zwitterionic materials for diverse biomedical applications such as drug delivery, protein stabilization, and surface modification of implantable materials. These zwitterionic materials have been used in assorted architectures, including protein conjugates, surface coatings, nanoparticles, hydrogels, and liposomes. Herein, we summarize recent advancements that further our understanding of interactions between biomolecules and zwitterionic moieties. We focus on the solution behavior of zwitterions and zwitterionic polymers and the molecular interactions between these molecules and biomolecules as determined by both experimental and theoretical studies. Further, we discuss the implications of using such interactions in vivo and how zwitterionic moieties may be incorporated to facilitate targeted delivery of proteins, genes, or small molecules. Finally, we discuss current knowledge gaps that need to be addressed to advance the field.
The lack of adequate blood/lymphatic vessels as well as low-potential articular cartilage regeneration underlines the necessity to search for alternative biomaterials. Owing to their unique features, such as reversible thermogelling behavior and tissue-like mechanical behavior, agarose-based biomaterials have played a key role in cartilage tissue repair. Accordingly, the need for fabricating novel highly efficient injectable agarose-based biomaterials as hydrogels for restoration of injured cartilage tissue has been recognized. In this review, the resources and conspicuous properties of the agarose-based biomaterials were reviewed. First, different types of signals together with their functionalities in the maintenance of cartilage homeostasis were explained. Then, various cellular signaling pathways and their significant role in cartilage tissue engineering were overviewed. Next, the molecular structure and its gelling behavior have been discussed. Eventually, the latest advancements, the lingering challenges, and future ahead of agarose derivatives from the cartilage regeneration perspective have been discussed.
The use of various cell-penetrating peptides (CPPs) to deliver genetic material for gene therapy applications has been a topic of interest for more than 20 years. The delivery of genetic material by using CPPs can be divided into two categories: covalently bound and electrostatically bound. Complexity of the synthesis procedure can be a significant barrier to translation when using a strategy requiring covalent binding of CPPs. In contrast, electrostatically complexing CPPs with genetic material or with a viral vector is relatively simple and has been demonstrated to improve gene delivery in both in vitro and in vivo studies. This review highlights gene therapy applications of complexes formed noncovalently between CPPs and genetic material or viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.