The effects of predators on prey populations may significantly alter many aspects of prey biology, including spatial distribution, foraging activities, and social interactions. In aquatic habitats, chemosensation is an important mode of communication and has been shown for many taxa, including crayfish, to be used in detection of predator and/or conspecific alarm cues. Here, we report on an experiment to test the hypothesis that detection of alarm cues results in greater individual investment in contests over shelters. We tested this hypothesis through dyadic contests between sex‐ and size‐matched, non‐reproductive individuals of Faxonius virilis. We found that crayfish responded to exposure to alarm cues by spending more time inside a shelter. We also report that in contests between pairs in which one crayfish had been exposed to alarm cues and the other had not, exposed individuals were significantly more likely to win ownership of a single shelter. However, we did not detect any differences in the contest parameters we recorded between exposed and unexposed crayfish. These impacts on both individual and social behavior indicate that the presence of predators is likely to have large effects on the distribution and structure of crayfish populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.