Monolayer-protected clusters were prepared by procedures like those yielding Au25L18 (where L=-SCH2CH2Ph=-SC2Ph) but using, instead, mixtures of Au and Pd salts, as starting materials, with the intent of creating and characterizing Au25-xMxL18 clusters. Isolation of small nanoparticle product followed by partial ligand exchange to introduce thiolated poly(ethylene glycol) (SPEG=-S(CH2CH2O)5CH3) into the nanoparticle ligand shell enabled characterization of the Au25-xMxL18 content by positive mode electrospray ionization mass spectrometry (ESI-MS). For synthetic feed mole ratios of Au:Pd of 9:1 and 13:12, electrospray spectra of the PEGylated MPCs showed that the reaction and isolation produce a mixture of Au25(SC2Ph)18 and a mono-Pd nanoparticle Au24Pd(SC2Ph)18. A higher proportion of the mono-Pd nanoparticle is produced by the 13:12 mole ratio, and also when the thiol:metal ratio was lowered, according to ESI-MS and MALDI-TOF-MS. As the nanoparticle mixture is enriched, by solvent fractionations, in Au24Pd(SC2Ph)18 relative to Au25(SC2Ph)18, the distinctive optical and electrochemical signatures of Au25(SC2Ph)18 are replaced by Au24Pd(SC2Ph)18 nanoparticle responses, which are very different, even though only one Au atom is replaced by a Pd atom.
A single phase (THF) synthesis of monodisperse [Oct(4)N(+)][Au(25)(SR)(18)(-)] nanoparticles is described that yields insights into pathways by which it is formed from initially produced larger nanoparticles. Including the Oct(4)N(+)Br(-) salt in a reported single phase synthetic procedure enables production of reduced nanoparticles having a fully occupied HOMO molecular energy level (Au(25)(SR)(18)(-), as opposed to a partially oxidized state, Au(25)(SR)(18)(0)). The revised synthesis accommodates several (but not all) different thiolate ligands. The importance of acidity, bromide, and dioxygen on Au(25) formation was also assessed. The presence of excess acid in the reaction mixture steers the reaction toward making Au(25)(SR)(18); while bromide does not seem to affect Au(25) formation, but it may play a role in maintaining the -1 oxidation state. Conducting the nanoparticle synthesis and "aging" period in the absence of dioxygen (under Ar) does not produce small nanoparticles, providing insights into the pathway of reaction product "aging" in the synthesis solvent, THF. The "aging" process favors the Au(25)(-) moiety as an end point and possibly involves degradation of larger nanoparticles by hydroperoxides formed from THF and oxygen.
The use of mixed salts to generate new composite ionic
liquids
(ILs) provides a facile means
of readily tuning or tailoring the desired properties of ionic media.
Despite this, very little information is available about how the structure
of the selected ions and composition impacts the properties of salt
mixtures. To explore this, six binary IL1–IL2 mixtures based on N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide salts have
been characterized. The physicochemical properties (density, viscosity,
and ionic conductivity) and phase behavior of these mixtures are reported.
The variation of the alkyl chains lengths on the cations plays a significant
role in determining both the phase behavior and the physicochemical
properties of the mixtures. Notably, the “tunability”
of the properties of the IL mixtures is much easier to control than
is found by simply making small structural changes to the ions in
a given salt.
This supplement contains: a. Specific synthetic details for ionic liquids A, B, C b. Figures expanding on the experimental details and observations c. Description and details of electronic migration corrections Reference numbers are those in the manuscript.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.