Archaea play indispensable roles in global biogeochemical cycles, yet many critical cellular processes, including cell-shape determination, are poorly understood.Haloferax volcanii, a model haloarchaeon, forms rods and disks, depending on growth conditions. Here, we used a combination of iterative proteomics, genetics, and live-cell imaging to identify distinct mutants that only form rods or disks. We compared the proteomes of the mutants with wild-type cells across growth phases, thereby distinguishing between protein abundance changes specific to cell shape and those related to growth phases. The corresponding results indicated a diverse set of proteins, including transporters, transducers, signaling components, and transcriptional regulators, as important for cell-shape determination. We also identified structural proteins, including a previously unknown cytoskeletal element, theHfx. volcaniiactin homolog volactin, which plays a role in disk-shape morphogenesis. In summary, we gleaned important insights into archaeal cell-shape determination, with possible implications for understanding the evolution of cell morphology regulation across domains.
Changes in DNA molecules are common, due to the effects of UV light and other external and internal mutagens. Cells have a variety of repair mechanisms which serve to maintain the accuracy of the genetic code. This activity includes a low-cost, safe and technically feasible experiment, which allows students to observe the effects of UV mutagenesis and DNA photorepair in the halophilc archaeon, Haloferax volcanii. An optional extension links this activity to topics of immediate concern to students – how exposure to UVC light contributes to skin cancer risk and the protective effects of sunscreen. Students design and carry out an experiment to test whether SPF 15 sunscreen increases the lethal exposure time for H. volcanii by a factor of 15. Throughout the activity, discussion questions engage students in actively thinking about the biological phenomena and experimental procedures and analysis. This activity is designed for students in college or university genetics, microbiology, or introductory biology courses as well as in high school honors biology courses. Teachers report that this activity was valuable in helping students understand mutagenesis and photorepair and in developing student skills in designing and analyzing experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.