Towards development of a methicillin-resistant S. aureus (MRSA) vaccine we evaluated a neutralizing anti-glucosaminidase (Gmd) monoclonal antibody (1C11) in a murine model of implant-associated osteomyelitis, and compared its effects on LAC USA300 MRSA versus placebo (alpha-T2m) and a Gmd-deficient isogenic strain (delta-Gmd). 1C11 significantly reduced infection severity, as determined by bioluminescent imaging of bacteria, micro-CT assessment of osteolysis and histomorphometry of abscess numbers (p<0.05). Histology also revealed infiltrating macrophages, and the complete lack of staphylococcal abscess communities (SAC), in marrow abscesses of 1C11 treated mice. In vitro, 1C11 had no direct effects on proliferation, but electron microscopy demonstrated that 1C11 treatment phenocopies delta-Gmd defects in binary fission. Moreover, addition of 1C11 to MRSA cultures induced the formation of large bacterial aggregates (megaclusters) that sedimented out of solution, which was not observed in delta-Gmd cultures or 1C11 treated cultures of a protein A-deficient strain (delta-Spa), suggesting that the combined effects of Gmd inhibition and antibody-mediated agglutination are required. Finally, we demonstrated that macrophage opsonophagocytosis of MRSA and megaclusters is significantly increased by 1C11 (p<0.01). Collectively, these results suggest that the primary mechanism of anti-Gmd humoral immunity against MRSA osteomyelitis is macrophage invasion of SAC and opsonophagocytosis of megaclusters.
Staphylococcus aureus (S. aureus) osteomyelitis is a significant complication for orthopaedic patients undergoing surgery, particularly with fracture fixation and arthroplasty. Given the difficulty in studying S. aureus infections in human subjects, animal models serve an integral role in exploring the pathogenesis of osteomyelitis, and aid in determining the efficacy of prophylactic and therapeutic treatments. Animal models should mimic the clinical scenarios seen in patients as closely as possible to permit the experimental results to be translated to the corresponding clinical care. To help understand existing animal models of S. aureus, we conducted a systematic search of PubMed and Ovid MEDLINE to identify in vivo animal experiments that have investigated the management of S. aureus osteomyelitis in the context of fractures and metallic implants. In this review, experimental studies are categorised by animal species and are further classified by the setting of the infection. Study methods are summarised and the relevant advantages and disadvantages of each species and model are discussed. While no ideal animal model exists, the understanding of a model's strengths and limitations should assist clinicians and researchers to appropriately select an animal model to translate the conclusions to the clinical setting.
Most (62%) of the septic joints were managed effectively with a single surgical debridement. Adults with a history of inflammatory arthropathy, involvement of a large joint, a synovial-fluid nucleated cell count of >85.0 x 10(9) cells/L, an infection with S. aureus, or a history of diabetes had a higher risk of failure of a single surgical debridement for acute septic arthritis and requiring additional surgical debridement(s).
Staphylococcus aureus infections can be challenging to diagnose, and there is no diagnostic test for host immunity. We demonstrated a cost-effective assay for determining the anti-glucosaminidase titer, which can be readily combined with conventional serology to improve diagnosis and to assess host immunity against Staphylococcus aureus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.