11Precise regulation of cell shape is vital for building functional tissues. Here, we study the 12 mechanisms which lead to the formation of highly elongated anisotropic epithelial cells in the 13Drosophila epidermis. We demonstrate that this cell shape is the result of two counteracting 14 mechanisms at the cell surface: actomyosin, which inhibits cell elongation downstream of 15RhoA signalling, and intercellular adhesion, modulated via clathrin-mediated endocytosis of 16 E-cadherin, which promotes cell elongation downstream of the GTPase Arf1. We show that 17 these two mechanisms are interconnected, with RhoA signalling activity reducing Arf1 18 recruitment to the plasma membrane. Additionally, cell adhesion itself regulates both 19 mechanisms: p120-catenin, a regulator of intercellular adhesion, promotes the activity of both 20Arf1 and RhoA. Altogether, we uncover a complex network of interactions between cell-cell 21 adhesion, the endocytic machinery, and the actomyosin cortex, and demonstrate how this 22
Precise regulation of cell shape is vital for building functional tissues. Here, we study the mechanisms that lead to the formation of highly elongated anisotropic epithelial cells in the Drosophila epidermis. We demonstrate that this cell shape is the result of two counteracting mechanisms at the cell surface that regulate the degree of elongation: actomyosin, which inhibits cell elongation downstream of RhoA (Rho1 in Drosophila) and intercellular adhesion, modulated via clathrin-mediated endocytosis of E-cadherin (encoded by shotgun in flies), which promotes cell elongation downstream of the GTPase Arf1 (Arf79F in Drosophila). We show that these two mechanisms do not act independently but are interconnected, with RhoA signalling reducing Arf1 recruitment to the plasma membrane. Additionally, cell adhesion itself regulates both mechanisms – p120-catenin, a regulator of intercellular adhesion, promotes the activity of both Arf1 and RhoA. Altogether, we uncover a complex network of interactions between cell–cell adhesion, the endocytic machinery and the actomyosin cortex, and demonstrate how this network regulates cell shape in an epithelial tissue in vivo.
The epithelial-to-mesenchymal transition is a highly dynamic cell process and tools such as Fluorescence recovery after photobleaching (FRAP), which allow the study of rapid protein dynamics, enable the following of this process in vivo. This technique uses a short intense pulse of photons to disrupt the fluorescence of a tagged protein in a region of a sample. The fluorescent signal intensity after this bleaching is then recorded and the signal recovery used to provide an indicator of the dynamics of the protein of interest. This technique can be applied to any fluorescently tagged protein, but membrane-bound proteins present an interesting challenge as they are spatially confined and subject to specialized cellular trafficking. Several methods of analysis can be applied which can disentangle these various processes and enable the extraction of information from the recovery curves.Here we describe this technique when applied for the quantification of the plasma membrane-bound E-cadherin protein in vivo using the epidermis of the late embryo of Drosophila melanogaster (Drosophila) as an example of this technique.
Correct cell shape is indispensable for tissue architecture, with cell shape being determined by cortical actin and surface adhesion. The role of adhesion in remodelling tissue is to counteract the deformation of cells by force, resulting from actomyosin contractility, and to maintain tissue integrity. The dynamics of this adhesion are critical to the processes of cell shape formation and maintenance. Here, we show that the trafficking molecule Arf6 has a direct impact on cell elongation, by acting to stabilize E-cadherin-based adhesion complexes at the cell surface, in addition to its canonical role in endocytosis. We demonstrate that these functions of Arf6 are dependent on the molecule Flotillin1, which recruits Arf6 to the plasma membrane. Our data suggest that Arf6 and Flotillin1 operate in a pathway distinct from clathrin-mediated endocytosis. Altogether, we demonstrate that Arf6- and Flotillin1-dependent regulation of the dynamics of cell adhesion contribute to moulding tissue in vivo . This article is part of the discussion meeting issue ‘Contemporary morphogenesis’.
The regulation of E-cadherin at the plasma membrane by endocytosis is of vital importance for developmental and disease. p120-catenin, which binds to the E-cadherin C-terminus, can both promote and inhibit E-cadherin endocytosis. However, little is known about what determines the directionality of p120-catenin activity, and the molecules downstream. Here, we have discovered that p120-catenin fine-tunes the clathrin-mediated endocytosis of Ecadherin in Drosophila embryonic epidermal cells. It simultaneously activated two actinremodelling pathways with opposing effects: RhoA, which stabilized E-cadherin at the membrane, and Arf1, which promoted internalization. Epistasis experiments revealed that RhoA additionally inhibited Arf1. E-cadherin was efficiently endocytosed only in the presence of intermediate p120-catenin amounts with too little and too much p120-catenin inhibiting E-cadherin endocytosis. Finally, we found that p120-catenin levels altered the tension of the plasma membrane. Altogether, this shows that p120-catenin is a central hub which co-ordinates cell adhesion, endocytosis, and actin dynamics with tissue tension.requires Rho-kinase for recruitment to AJs [76][77][78].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.