Repurposing FDA-approved drugs with the aid of gene signatures of disease can accelerate the development of new therapeutics. A major challenge to developing reliable drug predictions is heterogeneity. Different gene signatures of the same disease or drug treatment often show poor overlap across studies, as a consequence of both biological and technical variability, and this can affect the quality and reproducibility of computational drug predictions. Existing algorithms for signature-based drug repurposing use only individual signatures as input. But for many diseases, there are dozens of signatures in the public domain. Methods that exploit all available transcriptional knowledge on a disease should produce improved drug predictions. Here, we adapt an established meta-analysis framework to address the problem of drug repurposing using an ensemble of disease signatures. Our computational pipeline takes as input a collection of disease signatures, and outputs a list of drugs predicted to consistently reverse pathological gene changes. We apply our method to conduct the largest and most systematic repurposing study on lung cancer transcriptomes, using 21 signatures. We show that scaling up transcriptional knowledge significantly increases the reproducibility of top drug hits, from 44% to 78%. We extensively characterize drug hits in silico, demonstrating that they slow growth significantly in nine lung cancer cell lines from the NCI-60 collection, and identify CALM1 and PLA2G4A as promising drug targets for lung cancer. Our meta-analysis pipeline is general, and applicable to any disease context; it can be applied to improve the results of signature-based drug repurposing by leveraging the large number of disease signatures in the public domain.
Drug modes of action are complex and still poorly understood. The set of known drug targets is widely acknowledged to be biased and incomplete, and so gives only limited insight into the system-wide effects of drugs. But a high-throughput assay unique to yeast—barcode-based chemogenomic screens—can measure the individual drug response of every yeast deletion mutant in parallel. NetwoRx (http://ophid.utoronto.ca/networx) is the first resource to store data from these extremely valuable yeast chemogenomics experiments. In total, NetwoRx stores data on 5924 genes and 466 drugs. In addition, we applied data-mining approaches to identify yeast pathways, functions and phenotypes that are targeted by particular drugs, compute measures of drug–drug similarity and construct drug–phenotype networks. These data are all available to search or download through NetwoRx; users can search by drug name, gene name or gene set identifier. We also set up automated analysis routines in NetwoRx; users can query new gene sets against the entire collection of drug profiles and retrieve the drugs that target them. We demonstrate with use case examples how NetwoRx can be applied to target specific phenotypes, repurpose drugs using mode of action analysis, investigate bipartite networks and predict new drugs that affect yeast aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.