<div><div><div><p>Modern molecular mechanics force fields are widely used for modelling the dynamics and interactions of small organic molecules using libraries of transferable force field parameters. For molecules outside the training set, parameters may be missing or inaccurate, and in these cases, it may be preferable to derive molecule-specific parameters. Here we present an intuitive parameter derivation toolkit, QUBEKit (QUantum mechanical BEspoke Kit), which enables the automated generation of system-specific small molecule force field parameters directly from quantum mechanics. QUBEKit is written in python and combines the latest QM parameter derivation methodologies with a novel method for deriving the positions and charges of off-center virtual sites. As a proof of concept, we have re-derived a complete set of parameters for 109 small organic molecules, and assessed the accuracy by comparing computed liquid properties with experiment. QUBEKit gives highly competitive results when compared to standard transferable force fields, with mean unsigned errors of 0.024 g/cm3, 0.79 kcal/mol and 1.17 kcal/mol for the liquid density, heat of vaporization and free energy of hydration respectively. This indicates that the derived parameters are suitable for molecular modelling applications, including computer-aided drug design.</p></div></div></div>
Counter-geoengineering is the idea that a country might seek or threaten to counteract the cooling effect of solar geoengineering through technical means. Although this concept has been mentioned with increasing frequency in commentary on geoengineering, it has received little scholarly attention. We offer a preliminary analysis. We begin by distinguishing two kinds of counter-geoengineering: countervailing with a warming agent and neutralizing with a physical disruption. Based on this distinction, we review prior suggestions and describe novel methods by which either method might be accomplished, within the constraints imposed by deep technical uncertainties and substantial technical challenges. We then reflect on the strategic requirements and motivations for developing counter geoengineering and use a simple game-theoretic framework to demonstrate how counter-geoengineering might interact with the free-driver dynamic of solar geoengineering to shape climate geopolitics. We find that any state that could credibly threaten counter-geoengineering would effectively have a veto over the use of solar geoengineering, which could reduce the prospects of unilateral deployment. Alternatively, the development of geoengineering and counter-geoengineering capabilities could lead to dangerous brinkmanship. We conclude that the development of counter-geoengineering would face considerable practical obstacles and would signal continuing political failure to manage climate risks on a cooperative basis.
One hundred and thirty Atlantic sharpnose shark Rhizoprionodon terraenovae livers were collected from April 1999 to October 2001 from inshore waters of the Mississippi Sound to investigate seasonal and inter-annual variation in their energetic condition. A decline in the hepato-somatic index (I H ) was observed from 1999 to 2001. In addition, I H , liver specific energy content and total energy content were lowest during the summer and highest during the spring and autumn, while liver water content was highest during the summer and lowest during the spring and autumn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.