The stratum corneum is the main barrier to transdermal drug delivery which has previously resulted in mathematical modelling of solute transport in the skin being primarily directed at this skin layer. However, for topical treatment and skin toxicity studies, the concentration in the epidermis and dermis is important and needs to be modelled mathematically. Hitherto, mathematical models for viable skin layers typically simplified the clearance of solute by blood, either assuming sink condition at the top of the skin capillary loops or assuming a distributed clearance in the dermis. This paper is an attempt to develop a physiologically Preprint submitted to Elsevier July 30, 2019 capillaries, the effective depth increased to 180µm. The presented modelling is also essential for determining a transdermal flux when the stratum corneum barrier is compromised by such methods as microporation, application of chemical enhancers or microneedles.
The skin concentration of a substance after a topical application or exposure determines both local treatment outcomes and the dermal toxicity assessment of various products. However, quantifying the time course of those concentrations at skin effect sites, such as the viable epidermal, superficial dermis and appendages in humans is especially problematic in vivo, making physiologically based mathematical modelling an essential tool to meet this need. This work further develops our published physiologically based pharmacokinetic and COMSOL based dermal transport modelling by considering the impact of the superficial subpapillary dermal plexus, which we represent as two well stirred compartments. The work also studied the impact on dermal concentrations of subpapillary plexus size, depth, blood velocity and density of subpapillary plexus vessels. Sensitivity analyses are used to define the most important transport determinants of skin concentrations after topical application of a substance, with previously published results used to validate the resulting analyses. This resulting model describes the available experimental data better than previous models, especially at deeper dermal depths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.