We present DeepPrint, a deep network, which learns to extract fixed-length fingerprint representations of only 200 bytes. DeepPrint incorporates fingerprint domain knowledge, including alignment and minutiae detection, into the deep network architecture to maximize the discriminative power of its representation. The compact, DeepPrint representation has several advantages over the prevailing variable length minutiae representation which (i) requires computationally expensive graph matching techniques, (ii) is difficult to secure using strong encryption schemes (e.g. homomorphic encryption), and (iii) has low discriminative power in poor quality fingerprints where minutiae extraction is unreliable. We benchmark DeepPrint against two top performing COTS SDKs (Verifinger and Innovatrics) from the NIST and FVC evaluations. Coupled with a re-ranking scheme, the DeepPrint rank-1 search accuracy on the NIST SD4 dataset against a gallery of 1.1 million fingerprints is comparable to the top COTS matcher, but it is significantly faster (DeepPrint: 98.80% in 0.3 seconds vs. COTS A: 98.85% in 27 seconds). To the best of our knowledge, the DeepPrint representation is the most compact and discriminative fixed-length fingerprint representation reported in the academic literature.
We open source an easy to assemble, spoof resistant, high resolution, optical fingerprint reader, called RaspiReader, using ubiquitous components. By using our open source STL files and software, RaspiReader can be built in under one hour for only US $175. As such, RaspiReader provides the fingerprint research community a seamless and simple method for quickly prototyping new ideas involving fingerprint reader hardware. In particular, we posit that this open source fingerprint reader will facilitate the exploration of novel fingerprint spoof detection techniques involving both hardware and software. We demonstrate one such spoof detection technique by specially customizing RaspiReader with two cameras for fingerprint image acquisition. One camera provides high contrast, frustrated total internal reflection (FTIR) fingerprint images, and the other outputs direct images of the finger in contact with the platen. Using both of these image streams, we extract complementary information which, when fused together and used for spoof detection, results in marked performance improvement over previous methods relying only on grayscale FTIR images provided by COTS optical readers. Finally, fingerprint matching experiments between images acquired from the FTIR output of RaspiReader and images acquired from a COTS reader verify the interoperability of the RaspiReader with existing COTS optical readers.
We present the design and manufacturing of high fidelity universal 3D fingerprint targets, which can be imaged on a variety of fingerprint sensing technologies, namely capacitive, contact-optical, and contactless-optical. Universal 3D fingerprint targets enable, for the first time, not only a repeatable and controlled evaluation of fingerprint readers, but also the ability to conduct fingerprint reader interoperability studies. Fingerprint reader interoperability refers to how robust fingerprint recognition systems are to variations in the images acquired by different types of fingerprint readers. To build universal 3D fingerprint targets, we adopt a molding and casting framework consisting of (i) digital mapping of fingerprint images to a negative mold, (ii) CAD modeling a scaffolding system to hold the negative mold, (iii) fabricating the mold and scaffolding system with a high resolution 3D printer, (iv) producing or mixing a material with similar electrical, optical, and mechanical properties to that of the human finger, and (v) fabricating a 3D fingerprint target using controlled casting. Our experiments conducted with PIV and Appendix F certified optical (contact and contactless) and capacitive fingerprint readers demonstrate the usefulness of universal 3D fingerprint targets for controlled and repeatable fingerprint reader evaluations and also fingerprint reader interoperability studies.
Prevailing fingerprint recognition systems are vulnerable to spoof attacks. To mitigate these attacks, automated spoof detectors are trained to distinguish a set of live or bona fide fingerprints from a set of known spoof fingerprints. Despite their success, spoof detectors remain vulnerable when exposed to attacks from spoofs made with materials not seen during training of the detector. To alleviate this shortcoming, we approach spoof detection as a oneclass classification problem. The goal is to train a spoof detector on only the live fingerprints such that once the concept of "live" has been learned, spoofs of any material can be rejected. We accomplish this through training multiple generative adversarial networks (GANS) on live fingerprint images acquired with the open source, dual-camera, 1900 ppi RaspiReader fingerprint reader. Our experimental results, conducted on 5.5K spoof images (from 12 materials) and 11.8K live images show that the proposed approach improves the cross-material spoof detection performance over state-of-the-art one-class and binary class spoof detectors on 11 of 12 testing materials and 7 of 12 testing materials, respectively.the goal of automatically detecting and flagging spoof attacks 1 prior to performing biometric authentication 2 . Hardware based approaches to spoof detection involve adding additional sensors to the fingerprint reader with the goal of capturing features such as heartbeat, thermal output, blood flow, odor, and sub-dermal fingerprints better able to distin-1 https://www.youtube.com/watch?v=fZJI_BrMZXU 2 The IARPA ODIN program is an ongoing US government initiative aimed at developing robust spoof detection systems. https://www. iarpa.gov/index.php/research-programs/odin
Contactless palmprints are comprised of both global and local discriminative features. Most prior work focuses on extracting global features or local features alone for palmprint matching, whereas this research introduces a novel framework that combines global and local features for enhanced palmprint matching accuracy. Leveraging recent advancements in deep learning, this study integrates a vision transformer (ViT) and a convolutional neural network (CNN) to extract complementary local and global features. Next, a mobile-based, end-to-end palmprint recognition system is developed, referred to as Palm-ID. On top of the ViT and CNN features, Palm-ID incorporates a palmprint enhancement module and efficient dimensionality reduction (for faster matching). Palm-ID balances the trade-off between accuracy and latency, requiring just 18ms to extract a template of size 516 bytes, which can be efficiently searched against a 10,000 palmprint gallery in 0.33ms on an AMD EPYC 7543 32-Core CPU utilizing 128-threads. Cross-database matching protocols and evaluations on large-scale operational datasets demonstrate the robustness of the proposed method, achieving a TAR of 98.06% at FAR=0.01% on a newly collected, time-separated dataset. To show a practical deployment of the end-to-end system, the entire recognition pipeline is embedded within a mobile device for enhanced user privacy and security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.