Light rail transit services face many operational challenges, such as capacity constraints, mixed-traffic interference, and branch junctions. The service plans developed for these lines typically specify a precise schedule for each vehicle. Running time and demand variability, special events, and incidents make it challenging to adhere to schedules. Operators can enact real-time control actions to mitigate delays. This research compared the effectiveness of schedule- and headway-based holding strategies applied en route and at terminals (i.e., dispatching) on a simulation model of the Massachusetts Bay Transportation Authority Green Line, a four-branch light rail line. The effects of control point placement at terminals, along branches, along a central trunk, and in combinations of these three were studied, as were the effects of limiting holding at midroute stations. Holding strategies were compared on the basis of service and passenger-oriented performance. Headway-based holding was found to be a more effective method for ensuring that passengers experienced reasonable wait times within scheduled headways. Holding at terminals appeared to be the most beneficial to passengers; additional holding along the branches and limited holding along the trunk were shown to enhance these benefits. Holding only within the trunk of a multibranch service worsened service because of blockages from held trains.
Service reliability is a major concern for public transportation agencies. Transit services experience natural variability in operations performance, due to factors such as congestion, changes in demand, and operator behavior. This variability leads to irregular headways, resulting in longer passenger waits and decreased effective capacity as gaps in service form. Real-time control strategies allow controllers to regulate service and improve performance. This research tested the effectiveness of a headway-based dispatching strategy at a terminal on the Massachusetts Bay Transportation Authority (MBTA) Green Line in Boston, a complex, four-branch light rail line. Terminal personnel were provided with tablet computers showing departure times optimized by an even-headway policy. When optimized departure times were adhered to, peak period headway variability was reduced by 40%. The average wait was shortened by 15% (30 sec), and the 90th percentile wait was shortened by 21% (90 sec). The results show that adopting headway-based dispatching at terminals of high-frequency lines promises significant benefits to service and passengers if operational changes are accompanied by improved supervision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.