In games of chance, a near miss is said to occur when feedback for a loss approximates a win. For instance, obtaining “cherry–cherry–lemon” on a slot machine could be considered a near miss. Sixty-six years ago, B.F. Skinner first proposed the idea that near-miss events might reinforce continued play in slot machines, and despite some inconsistencies in the experimental literature, belief in this “near-miss effect” has remained strong. In the present manuscript, we will review this literature and present experimental assessments of the near-miss effect on the frequency of the gambling response. Experiment 1 used a tightly controlled resistance-to-extinction procedure in pigeons to evaluate the putative reinforcing effect of near misses relative to a control “far-miss” reel pattern. Experiment 2 extended Experiment 1’s procedure to human participants. The results of both experiments failed to support the near-miss effect hypothesis. Experiment 3 used a further simplified procedure to assess the validity of the resistance-to-extinction paradigm when a probable conditional reinforcer was present on the reel stimuli. Although a clear conditional response was obtained from the reel, subsequent testing in extinction revealed no conditionally reinforcing function of this stimulus on operant response frequency.
Chickadees produce a multi-note chick-a-dee call in multiple socially relevant contexts. One component of this call is the D note, which is a low-frequency and acoustically complex note with a harmonic-like structure. In the current study, we tested black-capped chickadees on a between-category operant discrimination task using vocalizations with acoustic structures similar to black-capped chickadee D notes, but produced by various songbird species, in order to examine the role that phylogenetic distance plays in acoustic perception of vocal signals. We assessed the extent to which discrimination performance was influenced by the phylogenetic relatedness among the species producing the vocalizations and by the phylogenetic relatedness between the subjects' species (black-capped chickadees) and the vocalizers' species. We also conducted a bioacoustic analysis and discriminant function analysis in order to examine the acoustic similarities among the discrimination stimuli. A previous study has shown that neural activation in black-capped chickadee auditory and perceptual brain regions is similar following the presentation of these vocalization categories. However, we found that chickadees had difficulty discriminating between forward and reversed black-capped chickadee D notes, a result that directly corresponded to the bioacoustic analysis indicating that these stimulus categories were acoustically similar. In addition, our results suggest that the discrimination between vocalizations produced by two parid species (chestnut-backed chickadees and tufted titmice) is perceptually difficult for black-capped chickadees, a finding that is likely in part because these vocalizations contain acoustic similarities. Overall, our results provide evidence that black-capped chickadees' perceptual abilities are influenced by both phylogenetic relatedness and acoustic structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.