The ability to appropriately modify physiological and morphological traits in response to temporal variation should increase fitness. We used recombinant hybrid plants generated by crossing taxa in the Piriqueta caroliniana complex to assess the effects of individual leaf traits and trait plasticities on growth in a temporally variable environment. Recombinant hybrids were used to provide a wide range of trait expression and to allow an assessment of the independent effects of individual traits across a range of genetic backgrounds. Hybrid genotypes were replicated through vegetative propagation and planted in common gardens at Archbold Biological Station in Venus, Florida, where they were monitored for growth, leaf morphological characters, and integrated water use efficiency (WUE) (C isotope ratio; delta(13)C) for two successive seasons. Under wet conditions only leaf area had significant effects on plant growth, but as conditions became drier, growth rates were greatest in plants with narrow leaves and higher trichome densities. Plants with higher WUE exhibited increased growth during the dry season but not during the wet season. WUE during the dry season was increased for plants with smaller, narrower leaves that had higher trichome densities and increased reflectance. Examination of alternative path models revealed that during the dry season leaf traits had significant effects on plant growth only through their direct effects on WUE, as estimated from delta(13)C. Over the entire growing season, plants with a greater ability to produce smaller and narrower leaves with higher trichome densities in response to reduced water availability had the greatest growth rate. These findings suggest that plants making appropriate changes to leaf morphology as conditions became dry had increased WUE, and that the ability to adjust leaf phenotypes in response to environmental variation is a mechanism by which plants increase fitness.
We assessed an existing method of remote sensing of wildland fire burn severity for its applicability in south-eastern USA vegetation types. This method uses Landsat satellite imagery to calculate the Normalised Burn Ratio (NBR) of reflectance bands sensitive to fire effects, and the change in NBR from pre- to post fire (dNBR) to estimate burn severity. To ground-truth ranges of NBR and dNBR that correspond to levels of burn severity, we measured severity using the Composite Burn Index at 731 locations stratified by plant community type, season of measurement, and time since fire. Best-fit curves relating Composite Burn Index to NBR or dNBR were used to determine reflectance value breakpoints that delimit levels of burn severity. Remotely estimated levels of burn severity within 3 months following fire had an average of 78% agreement with ground measurements using NBR and 75% agreement using dNBR. However, percentage agreement varied among habitat types and season of measurement, with either NBR or dNBR being advantageous under specific combinations of conditions. The results suggest this method will be useful for monitoring burned area and burn severity in south-eastern USA vegetation types if the provided recommendations and limitations are considered.
Burn severity products created by the Monitoring Trends in Burn Severity (MTBS) project were used to analyse historical trends in burn severity. Using a severity metric calculated by modelling the cumulative distribution of differenced Normalized Burn Ratio (dNBR) and Relativized dNBR (RdNBR) data, we examined burn area and burn severity of 4893 historical fires (1984–2010) distributed across the conterminous US (CONUS) and mapped by MTBS. Yearly mean burn severity values (weighted by area), maximum burn severity metric values, mean area of burn, maximum burn area and total burn area were evaluated within 27 US National Vegetation Classification macrogroups. Time series assessments of burned area and severity were performed using Mann–Kendall tests. Burned area and severity varied by vegetation classification, but most vegetation groups showed no detectable change during the 1984–2010 period. Of the 27 analysed vegetation groups, trend analysis revealed burned area increased in eight, and burn severity has increased in seven. This study suggests that burned area and severity, as measured by the severity metric based on dNBR or RdNBR, have not changed substantially for most vegetation groups evaluated within CONUS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.