Cardiothoracic surgeries are complex procedures during which the patient cardiovascular physiology is constantly changing due to various factors. Physiological changes begin with the induction of anesthesia, whose effects remain active into the postoperative period. Depending on the surgery, patients may require the use of cardiopulmonary bypass and cardioplegia, both of which affect postoperative physiology such as cardiac index and vascular resistance. Complications may arise due to adverse reactions to the surgery, causing hemodynamic instability. In response, fluid resuscitation and/or vasoactive agents with varying effects may be used in the intraoperative or postoperative periods to improve patient hemodynamics. These factors have important implications for lumped-parameter computational models which aim to assist surgical planning and medical device evaluation. Patient-specific models are typically tuned based on patient clinical data which may be asynchronously acquired through invasive techniques such as catheterization, during which the patient may be under the effects of drugs such as anesthesia. Due to the limited clinical data available and the inability to foresee short-term physiological regulation, models often retain preoperative parameters for postoperative predictions; however, without accounting for the physiologic changes that may occur during surgical procedures, the accuracy of these predictive models remains limited. Understanding and incorporating the effects of these factors in cardiovascular models will improve the model fidelity and predictive capabilities.
The use of external fixators allows for the direct investigation of newly formed interfragmentary bone, and the radiographic evaluation of the fracture. We validated the results of a finite element (FE) model with the in vitro stiffness' of two widely used external fixator devices used for in vivo analysis of fracture healing in rat femoral fractures with differing construction (Ti alloy ExFix1 and PEEK ExFix2). Rat femoral fracture fixation was modeled using two external fixators. For both constructs an osteotomy of 2.75 mm was used, and offset maintained at 5 mm. Tufnol, served as standardized substitutes for rat femora. Constructs were loaded under axial compression and torsion. Overall axial and torsional stiffness were compared between the in vitro models and FE results. FE models were also used to compare the fracture movement and overall pattern of von Mises stress across the external fixators. In vitro axial stiffness of ExFix1 was 29.26 N/mm AE 3.83 compared to ExFix2 6.31 N/mm AE 0.67 (p à < 0.05). Torsional stiffness of ExFix1 was 47.5 Nmm/˚AE 2.71 compared to ExFix2 at 19.1 Nmm/˚AE1.18 (p à < 0.05). FE results predicted similar comparative ratios between the ExFix1 and 2 as the in vitro studies. FE results predicted considerably larger interfragmentary motion in the ExFix2 comparing to ExFix1. We demonstrated significant differences in the stiffness' of the two external fixators as one would expect from such variable designs; yet, importantly we validated the utility of an FE model for the analysis and prediction of changes in fracture mechanics dependent on fixator choice. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.