Wireless sensor networks consist of physically distributed autonomous sensor nodes that cooperatively monitor physical or environmental conditions. One of the greatest benefits of wireless sensor networks is that they are capable of generating a more complete view of the sensed environment by acquiring larger quantities of correlated data than independent sensor monitors. The aircraft cabin is a highly dynamic environment which necessitates the use of more advanced sensing systems. It is with the motivation of painting a better picture of the aircraft cabin environment that such a wireless sensor network is being designed and prototyped. This paper discusses the design considerations required for wireless sensor networks in the aircraft cabin environment, as well as an overview of past and present systems developed for use in aircraft cabin environmental sensing. In addition to the sensor network, supporting tools are also discussed to enable analysis of the data collected. The primary goal of this research is to provide sensing tools to enable better characterization of the aircraft cabin environment.
Abstract-Wireless sensor networks (WSNs) have been a significant area of research over the past decade. WSN systems are used in a wide range of applications such as surveillance, environmental monitoring, target tracking, wildlife tracking, personal health monitoring, machinery monitoring, and many others. With such wide ranging applications, there is active research in nearly every facet of the field including network topologies, communication protocols, node localization, time synchronization, and sensor data processing. This movement has largely been the result of the advances in microelectronics and low-power radio systems. These advancements have enabled the design and implementation of small, powerful, low-power, wireless sensor network systems. Like any emerging technology, a standard needs to be established to allow the advances in the field to be directly leveraged rather than requiring reinvention. This paper outlines the traditional approaches to WSN system design, and in contrast, proposes the necessary components of a unified WSN framework that would support the majority of present applications as well as providing the foundation for further advancements in the field.
The semi-enclosed and pressurized nature of the aircraft cabin results in a highly dynamic environment. The dynamic conditions establish spatiotemporal dependent environmental characteristics. Characterization of aircraft cabin environmental and bleedair conditions have traditionally been done with stand-alone measurement systems which, by their very nature, cannot provide the necessary sensor coverage in such an environment. To this purpose, a prototype wireless sensor network system has been developed that can be deployed in the aircraft cabin environment. Each sensor node in the system incorporates the ability to measure common aircraft contaminants such as particulate matter and carbon dioxide, along with other key environmental factors such as temperature, air pressure, humidity, and sound pressure level. The wireless sensor network enables the collection of time-correlated results from the aircraft cabin, passing sensor data to a central collection point for storage or real-time monitoring. This paper discusses the results of testing this sensor system in a mockup of the Boeing 767 aircraft cabin environment. In this series of tests, both particulate matter and carbon dioxide were introduced into the simulated aircraft environment and measured using an array of 16 wirelessly connected sensor nodes. Two different arrangements of sensor nodes targeted both a two-dimensional plane across the aircraft cabin space and a localized three-dimensional space centered on two rows of the cabin. The test results show successful simultaneous tracking of the particulate matter and carbon dioxide concentrations as they disperse over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.