Managed realignment (MR) involves the landward relocation of sea defences to foster the (re)creation of coastal wetlands and achieve nature-based coastal protection. The wider application of MR is impeded by knowledge gaps related to lacking data on its effectiveness under extreme surges and the role of changes in vegetation cover, for example due to sea-level rise. We employ a calibrated and validated hydrodynamic model to explore relationships between surge attenuation, MR width(/area) and vegetation cover for the MR site of Freiston Shore, UK. We model a range of extreme water levels for four scenarios of variable MR width. We further assess the effects of reduced vegetation cover for the actual MR site and for the scenario of the site with the largest width. We show that surges are amplified for all but the largest two site scenarios, suggesting that increasing MR width results in higher attenuation rates. Substantial surge attenuation (up to 18 cm km−1) is only achieved for the largest site. The greatest contribution to the attenuation in the largest site scenario may come from water being reflected from the breached dike. While vegetation cover has no statistically significant effect on surge attenuations in the original MR site, higher coverage leads to higher attenuation rates in the largest site scenario. We conclude that at the open coast, only large MR sites (> 1148 m width) can attenuate surges with return periods > 10 years, while increased vegetation cover and larger MR widths enable the attenuation of even higher surges.
Managed realignment (MR) constitutes a form of nature-based adaptation to coastal hazards, including sea level rise and storm surges. The implementation of MR aims at the (re)creation of intertidal habitats, such as saltmarshes, for mitigating flood and erosion risks and for creating more natural shorelines. However, some evidence suggests that the desired coastal protection function of MR schemes (in terms of high water level (HWL) attenuation) may be limited and it was hypothesized that this was due to the configuration of the remaining seawalls, which we refer to as scheme design. The effects of scheme design on within-site HWL attenuation are 2 analysed for six scheme designs that differ in terms of breach characteristics and water storage capacity. The scenarios are established by manipulating the digital elevation model of the site topography to vary the configuration of the old defence line and the breaches.Our results show that changes in scheme design, particularly storage area and number and width of breaches, had significant effects on the site´s HWL attenuation capacity. Decreasing the tidal prism by changing the number and size of breaches, with the site area kept constant, leads to increased modelled HWL attenuation rates. However, average HWL attenuation rates of > 10 cm km -1 are only achieved when site size increases. The mean high water depth of each scenario, calculated by dividing tidal prism by MR area, explains most of the variation in average HWL attenuation between all scenarios. Attention to potential within-site hydrodynamics at the design stage will aid the construction of more effective MR schemes with respect to coastal protection in the future.
Abstract. Hydrodynamic models are increasingly being used in recent years to map coastal floodplains on local to continental scales. On regional scales, however, high computational costs and the need for high-resolution data limit their application. Additionally, model validation constitutes a major concern, as in-situ data are hardly available or limited in spatial coverage to small parts of the study region. Here we address these challenges by developing a modelling framework, which couples a hydrodynamic coastal inundation model covering the German Baltic Sea coast with a hydrodynamic coastal ocean model of the western Baltic Sea, to produce high resolution (50 m) regional scale flood maps for the entire German Baltic Sea coast. Using a LiDAR derived digital elevation model with 1 m horizontal resolution, we derive and validate the elevation of dikes and natural flood barriers such as dunes. Using this model setup, we simulate a storm surge event from January 2019, a surge with a return period of 200 years and two sea-level rise scenarios for the year 2100 (200-year event plus 1 m and 1.5 m). We validate the simulated flood extents by comparing them to inundation maps derived from Sentinel-1 SAR satellite imagery, acquired between 1.5 and 3.5 hours after the peak of the 2019 surge, covering a large part of the study region. Our results confirm that the German Baltic Sea coast is exposed to coastal flooding, with flood extent varying between 118 km2 and 1016 km2 for the 2019 storm surge and a 200-year return water level plus 1.5 m of sea-level rise, respectively. Hotspots of coastal flooding are mostly located in the federal state of Mecklenburg Western Pomerania. Our results emphasise the importance of current plans to update coastal protection schemes along the German Baltic Sea coast over the course of the 21st century in order to prevent large-scale damage in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.