Current understanding of the impact of coronavirus disease-2019 (COVID-19) on arrhythmias continues to evolve as new data emerge. Cardiac arrhythmias are more common in critically ill COVID-19 patients. The potential mechanisms that could result in arrhythmogenesis among COVID-19 patients include hypoxia caused by direct viral tissue involvement of lungs, myocarditis, abnormal host immune response, myocardial ischemia, myocardial strain, electrolyte derangements, intravascular volume imbalances, and drug sides effects. To manage these arrhythmias, it is imperative to increase the awareness of potential drug-drug interactions, to monitor QTc prolongation while receiving COVID therapy and provide special considerations for patients with inherited arrhythmia syndromes. It is also crucial to minimize exposure to COVID-19 infection by stratifying the need for intervention and using telemedicine. As COVID-19 infection continues to prevail with a potential for future surges, more data are required to better understand pathophysiology and to validate management strategies.
Highlights-Severe acute respiratory virus-2 (SARS-CoV2), the infection responsible for coronavirus disease-2019 (COVID-19), has spread globally leading to a devastating loss of life. In a few short months, the clinical and scientific communities have rallied to rapidly evolve our understanding of the mechanism(s) of disease and potential therapeutics. -This review discusses the current understanding of the basis virology of SARS-CoV2 and the epidemiology, clinical manifestations, including cardiovascular, and mortality of COVID-19. A detailed review of the viral life cycle and putative mechanism(s) of injury frames the discussion of possible preventative and therapeutic strategies. -The ongoing, unprecedented collective effort will, without a doubt, advance our ability to prevent the spread and optimally care for patients suffering from COVID-19. SummaryThe coronavirus disease-2019 (COVID-19), a contagious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV2), has reached pandemic status. As it spreads across the world, it has overwhelmed healthcare systems, strangled the global economy and led to a devastating loss of life. Widespread efforts from regulators, clinicians and scientists are driving a rapid expansion of knowledge of the SARS-CoV2 virus and the COVID-19 disease.We review the most current data with a focus on our basic understanding of the mechanism(s) of disease and translation to the clinical syndrome and potential therapeutics. We discuss the basic virology, epidemiology, clinical manifestation, multi-organ consequences, and outcomes. With a focus on cardiovascular complications, we propose several mechanisms of injury. The virology and potential mechanism of injury form the basis for a discussion of potential disease-modifying therapies.
Although coronavirus disease 2019 predominantly disrupts the respiratory system, there is accumulating experience that the disease, particularly in its more severe manifestations, also affects the cardiovascular system. Cardiovascular risk factors and chronic cardiovascular conditions are prevalent among patients affected by COVID-19 and associated with adverse outcomes. However, whether pre-existing cardiovascular disease is an independent determinant of higher mortality risk with COVID-19 remains uncertain. Acute cardiac injury, manifest by increased blood levels of cardiac troponin, electrocardiographic abnormalities, or myocardial dysfunction, occurs in up to~60% of hospitalized patients with severe COVID-19. Potential contributors to acute cardiac injury in the setting of COVID-19 include (1) acute changes in myocardial demand and supply due to tachycardia, hypotension, and hypoxemia resulting in type 2 myocardial infarction; (2) acute coronary syndrome due to acute atherothrombosis in a virally induced thrombotic and inflammatory milieu; (3) microvascular dysfunction due to diffuse microthrombi or vascular injury; (4) stress-related cardiomyopathy (Takotsubo syndrome); (5) nonischemic myocardial injury due to a hyperinflammatory cytokine storm; or (6) direct viral cardiomyocyte toxicity and myocarditis. Diffuse thrombosis is emerging as an important contributor to adverse outcomes in patients with COVID-19. Practitioners should be vigilant for cardiovascular complications of COVID-19. Monitoring may include serial cardiac troponin and natriuretic peptides, along with fibrinogen, D-dimer, and inflammatory biomarkers. Management decisions should rely on the clinical assessment for the probability of ongoing myocardial ischemia, as well as alternative nonischemic causes of injury, integrating the level of suspicion for COVID-19. (Am Heart J 2020;226:29-44.) Coronavirus disease 2019 (COVID-19) has affected more than 2 million individuals worldwide. 1 Although COVID-19 predominantly disrupts the respiratory system, there is accumulating experience that the disease, particularly in its more severe manifestations, also affects the cardiovascular system. [2][3][4] Therefore, an understanding of how COVID-19 may influence the cardiovascular system is important for both cardiovascular practitioners and researchers. This review synthesizes the clinical evidence published to date on the cardiovascular complications of COVID-19, emerging perspectives on their pathophysiology, and evolving best practices for clinical management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.