This work proposes a new solution‐based stall delay model to predict rotational effects on horizontal‐axis wind turbines. In contrast to conventional stall delay models that correct sectional airfoil data prior to the solution to account for three‐dimensional and rotational effects, a novel approach is proposed that corrects sectional airfoil data during a blade element momentum solution algorithm by investigating solution‐dependent parameters such as the spanwise circulation distribution and the local flow velocity acting at a section of blade. An iterative process is employed that successively modifies sectional lift and drag data until the blade circulation distribution is converged. Results obtained with the solution‐based stall delay model show consistent good agreement with measured data along the National Renewable Energy Laboratory Phase VI and Model Experiments in Controlled Conditions rotor blades at low and high wind speeds. Copyright © 2014 John Wiley & Sons, Ltd.
This work proposes a new solution-based stall delay model to predict rotational effects on horizontal-axis wind turbines. In contrast to conventional stall delay models that correct sectional airfoil data prior to the solution to account for threedimensional and rotational effects, a novel approach is proposed that corrects sectional airfoil data during a blade element momentum solution algorithm by investigating solution-dependent parameters such as the spanwise circulation distribution and the local flow velocity acting at a section of blade. An iterative process is employed that successively modifies sectional lift and drag data until the blade circulation distribution is converged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.