Recent developments in microfluidic devices, nanoparticle chemistry, fluorescent microscopy, and biochemical techniques such as genetic identification and antibody capture have provided easier and more sensitive platforms for detecting and diagnosing diseases as well as providing new fundamental insight into disease progression. These advancements have led to the development of new technology and assays capable of easy and early detection of pathogenicity as well as the enhancement of the drug discovery and development pipeline. While some studies have focused on treatment, many of these technologies have found initial success in laboratories as a precursor for clinical applications. This review highlights the current and future progress of microfluidic techniques geared toward the timely and inexpensive diagnosis of disease including technologies aimed at high-throughput single cell analysis for drug development. It also summarizes novel microfluidic approaches to characterize fundamental cellular behavior and heterogeneity.
Breast cancer cells co-cultured with adipose-derived stem cells (ASCs) in a microfluidic device exhibited enhanced growth, a more aggressive morphology and polarization towards the ASCs, and increased drug resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.