ROMP: A heterobicyclic olefin containing an oxazinone core is a new substrate for the ring‐opening metathesis polymerization (ROMP). The polymers produced undergo degradation when exposed to either acidic or basic conditions. Furthermore, a monomer that can be readily diversified to access degradable polymers bearing tailored functionality was developed.
Degradable polymers promote sustainability, mitigate environmental impact, and facilitate biological applications. Tailoring degradable polymers is challenging because installing functional group-rich side chains is difficult when the backbone itself is susceptible to degradation. A convenient means of side chain installation is through post-polymerization modification (PPM). In functionalizing polyoxazinones, a class of degradable polymers generated by the ring-opening metathesis polymerization (ROMP), we predictably found PPM challenging. Even the versatile azide-alkyne cycloaddition click reaction was ineffective. To solve this problem, we screened PPM reactions whose efficiencies could be assessed using photochemistry (excimer formation). The mildest, pH-neutral process was functionalization of a ketone-containing polymer to yield either oxime (acid labile)-or alkyoxylamine (stable)-substituted polymers. Using this approach, we equipped polymers with fluorophores, reporter groups, and bioactive epitopes. These modifications imbued the polymers with distinctive spectral properties and biological activities. Thus, polyoxazinones are now tunable through a modular method to diversify a macromolecule's function
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.