The Semail (Oman-United Arab Emirates) and other Tethyan-type ophiolites are underlain by a sole consisting of greenschist-to granulite-facies metamorphic rocks. As preserved remnants of the underthrust plate, sole exposures can be used to better understand the formation and obduction of ophiolites. Early models envisioned that the metamorphic sole of the Semail ophiolite formed as a result of thrusting of the hot ophiolite lithosphere over adjacent oceanic crust during initial emplacement; however, calculated pressures from granulite-facies mineral assemblages in the sole suggest the metamorphic rocks formed at >35 km depth, and are too high to be explained by the currently preserved thickness of ophiolite crust and mantle (up to 15-20 km). We have used high-precision U-Pb zircon dating to study the formation and evolution of the metamorphic sole at two well-studied localities. Our previous research and new results show that the ophiolite crust formed from 96.12-95.50 Ma. Our new dates from the Sumeini and Wadi Tayin sole localities indicate peak metamorphism at 96.16 and 94.82 Ma (± 0.022 to 0.035 Ma), respectively. The dates from the Sumeini sole locality show for the first time that the metamorphic rocks formed either prior to or during formation of the ophiolite crust, and were later juxtaposed with the base of the ophiolite. These data, combined with existing geochemical constraints, are best explained by formation of the ophiolite in a supra-subduction zone setting, with metamorphism of the sole rocks occurring in a subducted slab. The 1.3 Ma difference between the Wadi Tayin and Sumeini dates indicate that, in contrast to current models, the highest-grade rocks at different sole localities underwent metamorphism, and may have returned up the subduction channel, at different times.
Some seismic models derived from tomographic studies indicate elevated shear‐wave velocities (≥4.7 km/s) around 120–150 km depth in cratonic lithospheric mantle. These velocities are higher than those of cratonic peridotites, even assuming a cold cratonic geotherm (i.e., 35 mW/m2 surface heat flux) and accounting for compositional heterogeneity in cratonic peridotite xenoliths and the effects of anelasticity. We reviewed various geophysical and petrologic constraints on the nature of cratonic roots (seismic velocities, lithology/mineralogy, electrical conductivity, and gravity) and explored a range of permissible rock and mineral assemblages that can explain the high seismic velocities. These constraints suggest that diamond and eclogite are the most likely high‐Vs candidates to explain the observed velocities, but matching the high shear‐wave velocities requires either a large proportion of eclogite (>50 vol.%) or the presence of up to 3 vol.% diamond, with the exact values depending on peridotite and eclogite compositions and the geotherm. Both of these estimates are higher than predicted by observations made on natural samples from kimberlites. However, a combination of ≤20 vol.% eclogite and ~2 vol.% diamond may account for high shear‐wave velocities, in proportions consistent with multiple geophysical observables, data from natural samples, and within mass balance constraints for global carbon. Our results further show that cratonic thermal structure need not be significantly cooler than determined from xenolith thermobarometry.
The Cretaceous Semail ophiolite (northern Oman and the United ArabEmirates) includes an intact thrust slice of Tethyan oceanic crust and upper mantle formed above a northeast-dipping subduction zone that was the site of initiation of obduction. The normal metamorphic sole of the Semail ophiolite comprises a highly condensed sequence of hornblende + plagioclase ± garnet amphibolites with small enclaves of garnet + clinopyroxene granulites immediately beneath the mantle sequence peridotites, tectonically underlain by a series of epidote amphibolite and greenschist facies lithologies in a highly deformed ductile shear zone. Peak metamorphic conditions of 770-900 °C and 11-15 kbar indicate metamorphism at depths far greater than can be accounted for by the preserved thickness of the ophiolite (~15 km). In the mountains of northern Oman, the 1.2-km-thick Bani Hamid thrust sheet is composed of intensely folded granulite and amphibolite facies rocks within mantle sequence peridotites, exhumed by late-stage out-of-sequence thrusting along the Bani Hamid thrust. The Bani Hamid thrust slice includes two-pyroxene quartzites (± hornblende, cordierite, sapphirine), diopside + andradite garnet + wollastonite + scapolite marbles and calc-silicates and amphibolites (hornblende + plagioclase ± clinopyroxene ± biotite) with localized partial melting, intruded by hornblende pegmatites. The Bani Hamid granulites represent metamorphosed cherts and calcareous turbidites probably derived from the distal Haybi Complex and Oman Exotic limestones, which have an alkali basaltic substrate. Metamorphic modeling using the program THERMOCALC in the system NCKFMASHTO (Na 2 O-CaO-K 2 O-FeO-MgO-Al 2 O 3 -SiO 2 -H 2 O-TiO 2 -O)gives peak pressure-temperature conditions of 850 ± 60 °C and 6.3 ± 0.5 kbar, a pressure that is much lower than that of the metamorphic sole, suggesting a different origin. The 206 Pb/ 238 U zircon dates indicate that the gabbroic crust of the ophiolite formed by ridge magmatism from before 96.1 to 95.5 Ma. The 206 Pb/ 238 U zircon dates from the metamorphic sole range from 95.7 to 94.5 Ma, and suggest that metamorphism and melting was either synchronous with or slightly postdated ridge magmatism. The Bani Hamid granulites are younger; zircon and titanite U-Pb dates span ca. 94.5-89.8 Ma. Peraluminous granitic dikes intruding the mantle sequence peridotites are as young as 91.4 Ma and likely reflect localized partial melting of crustal material during the late stage of the obduction process. A minimum of 130 km shortening is recorded by restoration of the major folds within the Bani Hamid thrust sheet, and more than 30 km offset has occurred along the west-directed breaching out-of-sequence Bani Hamid thrust. These rocks may be representative of deep-level duplexes imaged on recent seismic sections across the mountains of northern Oman-United Arab Emirates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.